如圖,在矩形ABCD中,AB=8cm,AD=4cm,對角線AC,BD交于點O,動點P,Q分別從點A出發(fā),點P沿A-D-C以3cm/s的速度運動,同時點Q沿A-O-B以5cm/s速度運動,其中一點到達終點,另一動點隨之停止運動,連結(jié)AP,AQ,PQ.設(shè)運動時間為t(s),△APQ的面積為S(cm2).
(1)求線段PD的長(用含t的式子表示).
(2)當AP平分∠DAC時,直接寫出t的值.
(3)求S與t的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(4)當△APQ是等腰三角形時,直接寫出t的值.

5
【考點】四邊形綜合題.
【答案】(1)PD=(4-3t)cm或PD=(3t-4)cm;
(2)t=;
(3)S與t的函數(shù)關(guān)系式為:S=
;
(4)t=或t=2.
(2)t=
2
5
+
2
3
(3)S與t的函數(shù)關(guān)系式為:S=
= 3 t 2 ( 0 < t ≤ 4 3 ) |
= - 3 2 t 2 + 6 t ( 4 3 < t ≤ 2 ) |
= 3 2 t 2 - 4 t + 8 ( 2 < t ≤ 4 ) |
(4)t=
-
8
+
4
10
3
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/17 8:0:9組卷:23引用:1難度:0.2
相似題
-
1.如圖所示,在平行四邊形ABCD中,∠DAC=60°,點E是BC邊上一點,連接AE,AE=AB,點F是對角線AC邊上一動點,連接EF.
(1)如圖1,若點F與對角線交點O重合,已知BE=4,OC:EC=5:3,求AC的長度;
(2)如圖2,若EC=FC,點G是AC邊上一點,連接BG、EG,已知∠AEG=60°,∠AGB+∠BCD=180°,求證:BG+EG=DC.
(3)如圖3,若BE=4,CE=,將EF繞點E逆時針旋轉(zhuǎn)90°得EF',請直接寫出當AF'+433BF'取得最小值時△ABF′的面積.12發(fā)布:2025/6/21 23:30:2組卷:402引用:1難度:0.4 -
2.平行四邊形ABCD中,AB⊥AC,點E在邊AD上,連BE.
(1)如圖1,AC交BE于點G,若BE平分∠ABC,且∠DAC=30°,CG=2,請求出四邊形EGCD的面積;
(2)如圖2,點F在對角線AC上,且AF=AB,連BF,過點F作FH⊥BE于H,連AH并延長交CD于點M,點N在邊AD上,連MN.若AN=BF,2∠NMD=∠DAC+∠HBF,求證:HF+AH=AC.2
(3)如圖3,線段PO在線段BE上運動,點R在邊BC上,連接CQ、PR.若BE平分∠ABC,∠DAC=30°,AB=,PQ=3,BC=4BR.請直接寫出線段CQ+PQ+PR的和的最小值以及此時△CQE的面積.32發(fā)布:2025/6/22 1:0:1組卷:261引用:3難度:0.5 -
3.如圖,四邊形ABCD是平行四邊形,點E、F在BC上,且CF=BE,連接DE,過點F作FG⊥AB于點G.
(1)如圖1,若∠B=60°,DE平分∠ADC,且CD=2CF,CD=6,求平行四邊形ABCD的面積.3
(2)點H在GF上,且HE=HF,延長EH交AC,CD于點O,Q,連接AQ,若AC=BC=EQ,∠EQC=45°,求證:CE=BG+DQ.2發(fā)布:2025/6/21 23:0:2組卷:155引用:1難度:0.1
相關(guān)試卷