數(shù)學(xué)興趣活動課上,小明將等腰△ABC的底邊BC與直線l重合,問:
(1)已知AB=AC=6,∠BAC=120°,點P在BC邊所在的直線l上移動,根據(jù)“直線外一點到直線上所有點的連線中垂線段最短”,小明發(fā)現(xiàn)AP的最小值是33;
(2)為進一步運用該結(jié)論,小明發(fā)現(xiàn)當(dāng)AP最短時,在Rt△ABP中,∠P=90°,作了AD平分∠BAP,交BP于點D,點E、F分別是AD、AP邊上的動點,連接PE、EF,小明嘗試探索PE+EF的最小值,為轉(zhuǎn)化EF,小明在AB上截取AN,使得AN=AF,連接NE,易證△AEF≌△AEN,從而將PE+EF轉(zhuǎn)化為PE+EN,轉(zhuǎn)化到(1)的情況,若BP=33,AB=6,AP=3,則PE+EF的最小值為332332;
(3)請應(yīng)用以上轉(zhuǎn)化思想解決問題(3),在直角△ABC中,∠C=90°,∠B=30°,AC=10,點D是CB邊上的動點,連接AD,將線段AD順時針旋轉(zhuǎn)60°,得到線段AP,連接CP,求線段CP的最小值.

3
3
3
2
3
3
2
【考點】幾何變換綜合題.
【答案】3;
3
3
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/29 15:0:2組卷:702引用:3難度:0.1
相似題
-
1.如圖①,在△ABC中,∠ABC=90°,AB=4,BC=3.點P從點A出發(fā),沿折線AB-BC以每秒5個單位長度的速度向點C運動,同時點D從點C出發(fā),沿CA以每秒2個單位長度的速度向點A運動,點P到達點C時,點P、D同時停止運動.當(dāng)點P不與點A、C重合時,作點P關(guān)于直線AC的對稱點Q,連接PQ交AC于點E,連接DP、DQ.設(shè)點P的運動時間為t秒,線段CE的長為y.
(1)求出y與t之間的函數(shù)關(guān)系式;
(2)當(dāng)△PDQ為銳角三角形時,求t的取值范圍;
(3)如圖②,取PD的中點M,連接QM.當(dāng)直線QM與△ABC的一條直角邊平行時,直接寫出t的值.發(fā)布:2025/5/26 8:0:5組卷:371引用:1難度:0.1 -
2.如圖,兩直角三角形ABC和DEF有一條邊BC與EF在同一直線上,且∠DFE=∠ACB=60°,BC=1,EF=2.設(shè)EC=m(0≤m≤4),點M在線段AD上,且∠MEB=60°.
(1)如圖1,當(dāng)點C和點F重合時,=;AMDM
(2)如圖2,將圖1中的△ABC繞點C逆時針旋轉(zhuǎn),當(dāng)點A落在DF邊上時,求的值;AMDM
(3)當(dāng)點C在線段EF上時,△ABC繞點C逆時針旋轉(zhuǎn)α度(0<α<90°),原題中其他條件不變,則=.AMDM發(fā)布:2025/5/26 11:0:2組卷:652引用:2難度:0.2 -
3.在△ABC中,AC=AB,∠CAB=120°,點D是邊AB上的一動點.F是邊CD上的動點.連接AF并延長至點E,交BC于G,連接BE.且∠E+∠BDF=180°,∠AFC=60°.
(1)如圖1,若BC=6,BE=4,求CD的長.3
(2)如圖2,若點D是AB的中點,求證:AE=DF+BF.3
(3)如圖3,在(2)的條件下,將△BDE繞點B順時針旋轉(zhuǎn),旋轉(zhuǎn)中的三角形記作△D1BE1,取D1E1的中點為M,連接CM.當(dāng)CM最大時,直接寫出的值.AM2EM2發(fā)布:2025/5/26 11:30:1組卷:164引用:1難度:0.1