運算與推理以下是甲、乙兩人得到14+6>14+6的推理過程:(甲)因為14>9=3,6>4=2,所以14+6>3+2=5.又14+6=20<25=5,所以14+6>14+6.(乙)作一個直角三角形,兩直角邊長分別為14,6.利用勾股定理得斜邊長的平方為20,所以14+6>14+6.對于兩個人的推理,下列說法中正確的是( )
14
6
14
+
6
14
9
6
4
14
6
14
+
6
20
25
14
6
14
+
6
14
6
20
14
6
14
+
6
【答案】A
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:166引用:8難度:0.7
相似題
-
1.一個大矩形按如圖方式分割成九個小矩形,且只有標號為①和②的兩個小矩形為正方形,在滿足條件的所有分割中.若知道九個小矩形中n個小矩形的周長,就一定能算出這個大矩形的面積,則n的最小值是( ?。?/h2>
發(fā)布:2024/12/23 18:0:1組卷:2596引用:6難度:0.7 -
2.某珠寶店失竊,甲、乙、丙、丁四人涉嫌被拘審,四人的口供如下:甲:作案的是丙;乙:丁是作案者;丙:如果我作案,那么丁是主犯;?。鹤靼傅牟皇俏遥绻娜丝诠┲兄挥幸粋€是假的,那么以下判斷正確的是( ?。?/h2>
發(fā)布:2024/12/8 14:0:3組卷:263引用:1難度:0.9 -
3.桌子上有7張反面向上的紙牌,每次翻轉n張(n為正整數)紙牌,多次操作后能使所有紙牌正面向上嗎?用“+1”、“-1”分別表示一張紙牌“正面向上”、“反面向上”,將所有牌的對應值相加得到總和,我們的目標是將總和從-7變化為+7.
(1)當n=1時,每翻轉1張紙牌,總和的變化量是2或-2,則最少次操作后所有紙牌全部正面向上;
(2)當n=2時,每翻轉2張紙牌,總和的變化量是,多次操作后能使所有紙牌全部正面向上嗎?若能,最少需要幾次操作?若不能,簡要說明理由;
(3)若要使多次操作后所有紙牌全部正面向上,寫出n的所有可能的值.發(fā)布:2024/9/29 10:0:1組卷:860引用:10難度:0.5
把好題分享給你的好友吧~~