已知四邊形ABCD中,E,F(xiàn)分別是AB,AD邊上的點,DE與CF交于點G.
(1)如圖1,若四邊形ABCD是矩形,且DE⊥CF.則DE?CD==CF?AD(填“<”或“=”或“>”);
(2)如圖2,若四邊形ABCD是平行四邊形,試探究:當∠B與∠EGC滿足什么關(guān)系時,使得DE?CD=CF?AD成立?并證明你的結(jié)論;
(3)如圖3,若BA=BC=3,DA=DC=4,∠BAD=90°,DE⊥CF.則DECF的值為25242524.

DE
CF
25
24
25
24
【考點】四邊形綜合題.
【答案】=;
25
24
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/8 17:0:8組卷:288引用:3難度:0.5
相似題
-
1.如圖,正方形ABCD中,P是對角線BD上一點,連接AP,將AP繞點A逆時針旋轉(zhuǎn)90°到AQ.PQ與AD,BC分別交于點E,F(xiàn).
(1)求證:AD平分∠PDQ.
(2)若BP=2,BC=4,求DE的長,2
(3)當=BPBD時,14=.(只寫結(jié)果)BFBC發(fā)布:2025/5/24 14:30:1組卷:24引用:1難度:0.1 -
2.過四邊形ABCD的頂點A作射線AM,P為射線AM上一點,連接DP.將AP繞點A順時針方向旋轉(zhuǎn)至AQ,記旋轉(zhuǎn)角∠PAQ=α,連接BQ.
(1)【探究發(fā)現(xiàn)】如圖1,數(shù)學興趣小組探究發(fā)現(xiàn),如果四邊形ABCD是正方形,且α=90°.無論點P在何處,總有BQ=DP,請證明這個結(jié)論.
(2)【類比遷移】如圖2,如果四邊形ABCD是菱形,∠DAB=α=60°,∠MAD=15°,連接PQ.當PQ⊥BQ,AB=時,求AP的長;6+2
(3)【拓展應用】如圖3,如果四邊形ABCD是矩形,AD=6,AB=8,AM平分∠DAC,α=90°.在射線AQ上截取AR,使得AR=AP.當△PBR是直角三角形時,請直接寫出AP的長.43發(fā)布:2025/5/24 15:30:1組卷:2630引用:11難度:0.2 -
3.如圖,△ABC中,∠ACB=90°,AC=BC,點D,E,分別在CA,BC的延長線且AD=CE,過點C作CF⊥DE,垂足為F,F(xiàn)C的延長線交AB的延長線于點G.
(1)求證:∠BCG=∠CDE;
(2)①在圖中找出與CG相等的線段,并證明;
②探究線段AG、BG、DE之間的數(shù)量關(guān)系(直接寫出);
(3)若AG=kBG,求的值(用含k的代數(shù)式表示).DFEF發(fā)布:2025/5/24 14:30:1組卷:510引用:2難度:0.3