愛好思考的小明在探究兩條直線的位置關(guān)系查閱資料時,發(fā)現(xiàn)了“中垂三角形”,即兩條中線相互垂直的三角形“中垂三角形”,如圖1、圖2、圖3中,AM、BN是△ABC的中線,AM⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
(特例研究)
(1)如圖1,當tan∠PAB=1,c=42時,a=b=4545.
(歸納證明)
(2)請你觀察(1)中的計算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來,并利用圖2證明你的結(jié)論.
(拓展證明)
(3)如圖4,在平行四邊形ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE交于點G,AD=35,AB=3,求AF的長.

2
5
5
5
【考點】四邊形綜合題.
【答案】4
5
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/25 8:0:9組卷:65引用:2難度:0.1
相似題
-
1.如圖,在?ABCD中,∠ADB=90°,AB=10cm,AD=8cm,點P從點D出發(fā),沿DA方向勻速運動,速度為2cm/s;同時,點Q從點B出發(fā),沿BC方向勻速運動,速度為1cm/s.當一個點停止運動,另一個點也停止運動.過點P作PE∥BD交AB于點E,連接PQ,交BD于點F.設(shè)運動時間為t(s)(0<t<4).解答下列問題:
(1)當t為何值時,PQ∥AB?
(2)連接EQ,設(shè)四邊形APQE的面積為y(cm2),求y與t的函數(shù)關(guān)系式.
(3)當t為何值時,點E在線段PQ的垂直平分線上?
(4)若點F關(guān)于AB的對稱點為F′,是否存在某一時刻t,使得點P,E,F(xiàn)′三點共線?若存在,求出t的值;若不存在,請說明理由.發(fā)布:2025/5/23 2:30:1組卷:955引用:5難度:0.3 -
2.如圖,四邊形ABCD中,AB=BC,∠ABC=120°.連接BD,總有∠DBC=∠DAB+60°.
(1)求∠ADB的度數(shù);
(2)點F是線段CD的中點,連接BF.
①寫出線段AD,BD,BF之間的數(shù)量關(guān)系,并給出證明;
②延長AD,BF相交于點N,連接CN,若,求線段CN長度的最小值.AB=23發(fā)布:2025/5/23 1:0:1組卷:457引用:1難度:0.1 -
3.綜合與實踐:情景再現(xiàn):我們動手操作:把正方形ABCD沿對角線剪開就分剪出兩個等腰直角三角形,把其中一個等腰直角三角形與正方形ABCD重新組合在一起,圖形變得豐富起來,當圖形旋轉(zhuǎn)時問題也隨旋轉(zhuǎn)應(yīng)運而生.如圖①把正方形ABCD沿對角線剪開,得兩個等腰直角三角形△ACD和△BCE.
(1)問題呈現(xiàn),我們把剪下的兩個三角形一個放大另一個縮小拼成如圖②所示的圖形,①若點P是平面內(nèi)一動點,AB=3,PA=1,則線段PB的取值范圍是 ;②直接寫出線段AE與DB的關(guān)系是 ;
(2)我們把剪下的其中一個三角形放大與正方形組合如圖③④⑤所示,點E在直線BC上,F(xiàn)M⊥CD交直線CD于M.①當點E在BC上時,如圖③所示,求證:AD=MF+CE;②當點E在BC的延長線時,如圖④所示,則線段AD、MF、CE具有的數(shù)量關(guān)系為 ;當點E在CB的延長線上時,如圖⑤所示,則線段AD、MF、CE具有的數(shù)量關(guān)系為 ;
(3)在(2)的條件下,連接EM,當,其他條件不變,則線段CE的長為 .S△EMF=8,AF2=50發(fā)布:2025/5/23 1:0:1組卷:158引用:2難度:0.3