如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,BC∥AD,PA=AB=BC=2,AD=4,E為棱PD的中點(diǎn),F(xiàn)是線段PC上一動點(diǎn).
(1)求證:平面PBC⊥平面PAB;
(2)若直線BF與平面ABCD所成角的正弦值為33時,求平面AEF與平面ADE夾角的余弦值.
3
3
【考點(diǎn)】空間向量法求解二面角及兩平面的夾角;平面與平面垂直.
【答案】(1)證明見解析;(2).
6
6
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/4 8:0:9組卷:216引用:4難度:0.4
相似題
-
1.“阿基米德多面體”也稱為半正多面體,是由邊數(shù)不全相同的正多邊形為面圍成的多面體,它體現(xiàn)了數(shù)學(xué)的對稱美.如圖,將一個正方體沿交于一頂點(diǎn)的三條棱的中點(diǎn)截去一個三棱錐,共可截去八個三棱錐,得到八個面為正三角形,六個面為正方形的“阿基米德多面體”,則該多面體中具有公共頂點(diǎn)的兩個正三角形所在平面的夾角正切值為( ?。?/h2>
發(fā)布:2024/11/9 21:30:1組卷:173引用:3難度:0.5 -
2.如圖,三棱柱ABC-A1B1C1滿足棱長都相等且AA1⊥平面ABC,D是棱CC1的中點(diǎn),E是棱AA1上的動點(diǎn).設(shè)AE=x,隨著x增大,平面BDE與底面ABC所成銳二面角的平面角是( ?。?/h2>
發(fā)布:2024/12/11 21:0:1組卷:1629引用:12難度:0.3 -
3.如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=2,BC=CC1=4,點(diǎn)D是棱AB的中點(diǎn),則平面ABB1A1與平面B1CD所成角的正弦值為( ?。?/h2>
發(fā)布:2024/11/15 14:30:2組卷:446引用:2難度:0.6