如圖1,將兩個等腰直角三角形紙片OAB和OCD放置在平面直角坐標(biāo)系中,點O(0,0),點A(0,2+1),點B(2+1,0),點C(0,1),點D(1,0).
(1)求證:AC=BD;
(2)如圖2,現(xiàn)將△OCD繞點O順時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°),連接AC,BD,這一過程中AC和BD是否仍然保持相等?說明理由;當(dāng)旋轉(zhuǎn)角α的度數(shù)為90°90°時,AC所在直線能夠垂直平分BD;
(3)在(2)的情況下,將旋轉(zhuǎn)角α的范圍擴大為0°<α<360°,那么在旋轉(zhuǎn)過程中,求△BAD的面積的最大值,并寫出此時旋轉(zhuǎn)角α的度數(shù).(直接寫出結(jié)果即可).
A
(
0
,
2
+
1
)
B
(
2
+
1
,
0
)
【考點】幾何變換綜合題.
【答案】90°
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:319引用:3難度:0.2
相似題
-
1.如圖,在等邊△ABC中,點D在BC邊上,點E在AC的延長線上,且DE=DA.
(1)求證:∠BAD=∠EDC;
(2)點E關(guān)于直線BC的對稱點為M,聯(lián)結(jié)DM,AM.
①根據(jù)題意將圖補全;
②在點D運動的過程中,DA和AM有什么數(shù)量關(guān)系并證明.發(fā)布:2024/12/23 14:0:1組卷:259引用:2難度:0.2 -
2.如圖(1),在矩形ABCD中,AB=6,BC=2
,點O是AB的中點,點P在AB的延長線上,且BP=3.一動點E從O點出發(fā),以每秒1個單位長度的速度沿OA勻速運動,到達A點后,立即以原速度沿AO返回;另一動點F從P點出發(fā),以每秒1個單位長度的速度沿射線PA勻速運動,點E、F同時出發(fā),當(dāng)兩點相遇時停止運動,在點E、F的運動過程中,如圖(2)以EF為邊作等邊△EFG,使△EFG和矩形ABCD在射線PA的同側(cè).設(shè)運動的時間為t秒(t>0).3
(1)如圖(3),當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過點C時,求運動時間t的值;
(2)如圖(4),當(dāng)?shù)冗叀鱁FG的頂點G恰好落在CD邊上時,求運動時間t的值;
(3)在整個運動過程中,設(shè)等邊△EFG和矩形ABCD重疊部分的面積為S,請求出S與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量,的取值范圍.發(fā)布:2025/1/13 8:0:2組卷:357引用:2難度:0.5 -
3.如圖,點M為矩形ABCD的邊BC上一點,將矩形ABCD沿AM折疊,使點B落在邊CD上的點E處,EB交AM于點F,在EA上取點G,使EG=EC.若GF=6,sin∠GFE=
,則AB=.45發(fā)布:2024/12/23 8:0:23組卷:414引用:2難度:0.1