試卷征集
加入會員
操作視頻

如圖,邊長為a的正方形ABCD中,E,F(xiàn)是邊AD,AB上兩點(與端點不重合),且AE=BF,連接CE,DF相交于點M.
(1)當E為邊AD的中點時,則DF的長為
5
2
a
5
2
a
(用含a的式子表示);
(2)求證:∠MCB+∠MFB=180°;
(3)點M能成為DF的中點嗎?如果能,求出此時CM的長(用含a的式子表示),如果不能,說明理由.

【考點】四邊形綜合題
【答案】
5
2
a
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:80引用:1難度:0.9
相似題
  • 1.問題提出:
    (1)如圖1,在矩形ABCD中,AB=4,AD=3,P是對角線AC上的一點,連接PD,將PD繞點P逆時針旋轉(zhuǎn)90°得到PM,過點M作MN⊥AC于N,求PN的長.
    問題解決:
    (2)2022年3月我省局部發(fā)生疫情,為落實“科學防治、精準施策、分級管理”,我省某小區(qū)設(shè)計防疫區(qū)域,在道路CD邊固定柱子(點Q),道路AB邊確定一點P,以PQ為邊,搭建正方形防疫區(qū)域PMNQ,內(nèi)部道路CD上設(shè)點E作為記錄處,△EPQ、△EPM、△EMN、△ENQ分別為不同的防疫物資放置區(qū)域,設(shè)計圖簡化如圖2所示,已知道路兩邊AB∥CD,道路寬為6m,Q為CD上一定點,P為AB上一動點,PE⊥CD于E.請問是否存在符合設(shè)計要求且面積最小的△EMN?若存在,請求出面積最小值及此時QE的長;若不存在,請說明理由.

    發(fā)布:2025/5/25 5:0:4組卷:214引用:2難度:0.1
  • 2.【概念理解】定義:我們把對角線互相垂直的四邊形叫做垂美四邊形如圖①.
    我們學習過的四邊形中是垂美四邊形的是
    ;(寫出一種即可)
    【性質(zhì)探究】
    利用圖①,垂美四邊形ABCD兩組對邊AB,CD的平方和與BC,AD的平方和之間的數(shù)量關(guān)系是

    【性質(zhì)應(yīng)用】
    (1)如圖②,在△ABC中,BC=6,AC=8,D,E分別是AB,BC的中點,連接AE,CD,若AE⊥CD,則AB的長為


    (2)如圖③,等腰Rt△BCE和等腰Rt△ADE中,∠BEC=∠AED=90°,AC與BD交于O點,BD與CE交于點F,AC與DE交于點G.若BE=6,AE=8,AB=12,求CD的長;
    【拓展應(yīng)用】如圖④,在?ABCD中,點E、F、G分別是AD、AB、CD的中點,EF⊥CF,AD=6,AB=8,求BG的長.

    發(fā)布:2025/5/25 5:0:4組卷:292引用:1難度:0.1
  • 3.【基礎(chǔ)鞏固】

    (1)如圖1,在△ABC中,D,E,F(xiàn)分別為AB,AC,BC上的點,DE∥BC,BF=CF,AF交DE于點G,求證:DG=EG.
    【嘗試應(yīng)用】
    (2)如圖2,在(1)的條件下,連結(jié)CD,CG.若CG⊥DE,CD=10,AE=6,求
    DE
    BC
    的值.
    【拓展提高】
    (3)如圖3,在?ABCD中,∠ADC=45°,AC與BD交于點O,E為AO上一點,EG∥BD交AD于點G,EF⊥EG交BC于點F.若∠EGF=40°,F(xiàn)G平分∠EFC,F(xiàn)G=8,求BF的長.

    發(fā)布:2025/5/25 5:0:4組卷:1609引用:1難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正