若函數(shù)G在m≤x≤n(m<n)上的最大值記為ymax,最小值記為ymin,且滿足ymax-ymin=k(k為整數(shù)),則稱函數(shù)G是在m≤x≤n上的“k階極差函數(shù)”.如函數(shù)y=x在0≤x≤1上的最大值ymax=1,最小值ymin=0,因此ymax-ymin=1,則稱函數(shù)y=x是在0≤x≤1上的“1階極差函數(shù)”,函數(shù)y=1x在14≤x≤12上的最大值ymax=4,最小值ymin=2,因此ymax-ymin=2,則稱函數(shù)y=1x是在14≤x≤12上的“2階極差函數(shù)”
(1)函數(shù)①y=1x,②y=x+1;③y=x2.其中函數(shù) ②②是在1≤x≤4上的“3階極差函數(shù)”;(填序號)
(2)已知函數(shù)G:y=ax2-4ax+3a(a>0).
①當(dāng)a=1時(shí),函數(shù)G是在t≤x≤t+1上的“2階極差函數(shù)”,求t的值;
②函數(shù)G是在m+2≤x≤2m+1(m為整數(shù))上的“3階級差函數(shù)”,且存在整數(shù)s,使得s=ymaxymin,求a的值.
y
=
1
x
1
4
≤
x
≤
1
2
y
=
1
x
1
4
≤
x
≤
1
2
y
=
1
x
s
=
y
max
y
min
【考點(diǎn)】二次函數(shù)綜合題.
【答案】②
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/16 6:0:3組卷:111引用:2難度:0.5
相似題
-
1.如圖,已知二次函數(shù)y=ax2+bx-4的圖象與x軸交于A,B兩點(diǎn),(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-2,0),且對稱軸為直線x=1,直線AD交拋物線于點(diǎn)D(2,m).
(1)求二次函數(shù)的表達(dá)式;
(2)在拋物線的對稱軸上是否存在一點(diǎn)M,使△MAC的周長最小,若存在,求出點(diǎn)M的坐標(biāo);
(3)如圖2,點(diǎn)P是線段AB上的一動點(diǎn)(不與A、B重合),過點(diǎn)P作PE∥AD交BD于E,連接DP,當(dāng)△DPE的面積最大時(shí),求點(diǎn)P的坐標(biāo).發(fā)布:2025/6/6 20:30:1組卷:90引用:1難度:0.2 -
2.如圖,已知拋物線y=x2+bx+c與直線y=-x+3相交于坐標(biāo)軸上的A,B兩點(diǎn),頂點(diǎn)為C.
(1)填空:b=
(2)將直線AB向下平移h個單位長度,得直線EF.當(dāng)h為何值時(shí),直線EF與拋物線y=x2+bx+c沒有交點(diǎn)?
(3)直線x=m與△ABC的邊AB,AC分別交于點(diǎn)M,N.當(dāng)直線x=m把△ABC的面積分為1:2兩部分時(shí),求m的值.發(fā)布:2025/6/6 21:0:2組卷:327引用:5難度:0.3 -
3.如圖,拋物線y=ax2+bx+2經(jīng)過點(diǎn)A(-1,0),B(4,0),交y軸于點(diǎn)C.
(1)求拋物線的表達(dá)式.
(2)點(diǎn)D為y軸右側(cè)拋物線上一點(diǎn),是否存在點(diǎn)D,使S△ABC=S△ABD?若存在,請求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.23
(3)將直線BC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)45°,與拋物線交于另一點(diǎn)E,求點(diǎn)E的坐標(biāo).發(fā)布:2025/6/6 23:30:1組卷:40引用:1難度:0.3