試卷征集
加入會員
操作視頻

已知實數(shù)x、y滿足條件:x-4
y
-
3
=
2
x
-
2
-y,那么x2-xy+y2=
37
37

【答案】37
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/30 7:30:1組卷:149引用:1難度:0.7
相似題
  • 1.教科書中這樣寫道:“我們把多項式(a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當?shù)捻棧故阶又谐霈F(xiàn)完全平方式,再減去這個項,使整個式子的值不變,這種方法叫做配方法.例如x2+2x-3=(x2+2x+1)-1-3=(x+1)2-4,2x2+4x-6=2(x2+2x+1)-2-6=2(x+1)2-8.
    根據(jù)閱讀材料解決下列問題:
    (1)當x為何值時,多項式-2x2-4x+6有最大值,并求出這個最大值.
    (2)求分式
    5
    x
    2
    -
    20
    x
    +
    29
    x
    2
    -
    4
    x
    +
    5
    的最大值.
    (3)當x>0時,求
    x
    2
    +
    2
    x
    +
    5
    x
    +
    1
    的最小值.

    發(fā)布:2025/6/1 23:30:1組卷:507引用:1難度:0.7
  • 2.閱讀下列材料:
    利用完全平方公式,可以將多項式ax2+bx+c(a≠0)變形為a(x+m)2+n的形式,我們把這樣的式子變形叫做多項式ax2+bx+c(a≠0)的配方法.
    運用多項式的配方法及平方差公式能對一些多項式進行分解因式.
    例如:x2+11x+24=x2+11x+(
    11
    2
    2-(
    11
    2
    2+24
    =
    x
    +
    11
    2
    2
    -
    25
    4
    =
    x
    +
    11
    2
    +
    5
    2
    x
    +
    11
    2
    -
    5
    2
    =
    x
    +
    8
    x
    +
    3

    根據(jù)以上材料,解答下列問題:
    (1)用多項式的配方法將x2+8x-1變形為(x+m)2+n的形式;
    (2)下面是某位同學用配方法及平方差公式把多項式x2-3x-40進行分解因式的解答過程:
    x2-3x-40
    =x2-3x+32-32-40
    =(x-3)2-49
    =(x-3+7)(x-3-7)
    =(x+4)(x-10)
    老師說,這位同學的解答過程中有錯誤,請你找出該同學解答中開始出現(xiàn)錯誤的地方,然后再寫出完整的、正確的解答過程.
    正確的解答過程:

    (3)求證:x,y取任何實數(shù)時,多項式x2+y2-2x-4y+16的值總為正數(shù).

    發(fā)布:2025/6/1 22:30:2組卷:467引用:8難度:0.7
  • 3.閱讀下面的材料并解答后面的問題:
    【閱讀】
    小亮:你能求出x2+4x-3的最小值嗎?如果能,其最小值是多少?
    小華:能.求解過程如下:
    因為x2+4x-3=x2+4x+4-4-3=(x2+4x+4)-(4+3)=(x+2)2-7.
    而(x+22)≥0,所以x2+4x-3的最小值是-7.
    【解答】
    (1)小華的求解過程正確嗎?
    (2)你能否求出x2-5x+4的最小值?如果能,寫出你的求解過程.

    發(fā)布:2025/6/1 20:30:1組卷:326引用:2難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正