我們通常用作差法比較代數(shù)式大?。纾阂阎狹=2x+3,N=2x+1,比較M和N的大小.先求M-N,若M-N>0,則M>N;若M-N<0,則M<N;若M-N=0,則M=N,反之亦成立.本題中因為M-N=2x+3-(2x+1)=2>0,所以M>N.
(1)如圖1是邊長為a的正方形,將正方形一邊不變,另一邊增加4,得到如圖2所示的新長方形,此長方形的面積為S1;將圖1中正方形邊長增加2得到如圖3所示的新正方形,此正方形的面積為S2.用含a的代數(shù)式表示S1=a2+4aa2+4a,S2=a2+4a+4a2+4a+4(需要化簡).然后請用作差法比較S1與S2大??;
(2)已知A=2a2-6a+1,B=a2-4a-1,請你用作差法比較A與B大?。?br />(3)若M=(a-4)2,N=16-(a-6)2,且M=N,求(a-4)(a-6)的值.
【答案】a2+4a;a2+4a+4
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:453引用:5難度:0.6
相似題
-
1.已知代數(shù)式-a2+2a-1,無論a取任何值,它的值一定是( ?。?/h2>
發(fā)布:2024/12/12 8:0:1組卷:107引用:3難度:0.7 -
2.若把代數(shù)式x2+2x-2化為(x+m)2+k的形式,其中m,k為常數(shù),則m+k的值為( ?。?/h2>
發(fā)布:2024/12/16 14:30:3組卷:101引用:3難度:0.9 -
3.已知a,b,c滿足4a2+2b-4=0,b2-4c+1=0,c2-12a+17=0,則a2+b2+c2等于( ?。?/h2>
發(fā)布:2024/12/23 12:30:2組卷:353引用:9難度:0.4
把好題分享給你的好友吧~~