已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合).經過點O,P折疊該紙片,得點B'和折痕OP.設BP=t.
(1)如圖1,當∠BOP=30°時,求點P的坐標;
(2)如圖2,經過點P再次折疊紙片,使點C落在直線PB'上,得點C'和折痕PQ,若AQ=m,試用含有t的式子表示m;
(3)在(2)的條件下,當點C'恰好落在邊OA上時,求點P的坐標.
【考點】四邊形綜合題.
【答案】(1)(2,6);
(2)m=t2-t+6(0<t<11);
(3)點P的坐標為或.
3
(2)m=
1
6
11
6
(3)點P的坐標為
(
11
-
13
3
,
6
)
(
11
+
13
3
,
6
)
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2025/5/24 14:0:2組卷:275引用:1難度:0.4
相似題
-
1.如圖,四邊形ABCD、EBGF都是正方形.
(1)如圖1,若AB=4,EC=,求FC的長;17
(2)如圖2,正方形EBGF繞點B逆時針旋轉,使點G正好落在EC上,猜想AE、EB、EC之間的數(shù)量關系,并證明你的結論;
(3)如圖3,在(2)條件下,∠BCE=22.5°,EC=2,點M為直線BC上一動點,連接EM,過點M作MN⊥EC,垂足為點N,直接寫出EM+MN的最小值.發(fā)布:2025/5/24 19:0:1組卷:233引用:2難度:0.5 -
2.如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=
,把Rt△ABC沿AB翻折得到Rt△ABD,過點B作BE⊥BC,交AD于點E,點F是線段BE上一點,且tan∠ADF=3.則下列結論中:①AE=BE;②△BED∽△ABC;③BD2=AD?DE;④AF=32.正確的有 .(把所有正確答案的序號都填上)2133發(fā)布:2025/5/24 19:30:1組卷:526引用:3難度:0.3 -
3.在矩形ABCD中,AB=6,BC=8,
【問題發(fā)現(xiàn)】
(1)如圖1,E為邊DC上的一個點,連接BE,過點C作BE的垂線交AD于點F,試猜想BE與CF的數(shù)量關系并說明理由.
【類比探究】
(2)如圖2,G為邊AB上的一個點,E為邊CD延長線上的一個點,連接GE交AD于點H,過點C作GE的垂線交AD于點F,試猜想GE與CF的數(shù)量關系并說明理由.
【拓展延伸】
(3)如圖3,點E從點B出發(fā)沿射線BC運動,連接AE,過點B作AE的垂線交射線CD于點F,過點E作BF的平行線,過點F作BC的平行線,兩平行線交于點H,連接DH,在點E的運動的路程中,線段DH的長度是否存在最小值?若存在,求出線段DH長度的最小值;若不存在,請說明理由.發(fā)布:2025/5/24 20:0:2組卷:309引用:3難度:0.2