數(shù)學(xué)興趣小組在活動(dòng)時(shí),老師提出了這樣一個(gè)問(wèn)題:
如圖1,在△ABC中,AB=6,AC=10,D是BC的中點(diǎn),求BC邊上的中線(xiàn)AD的取值范圍.
【閱讀理解】
小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:
(1)如圖1,延長(zhǎng)AD到點(diǎn)E,使DE=AD,連接BE.根據(jù) SASSAS可以判定△ADC≌△EDB△EDB,得出AC= BEBE.
這樣就能把線(xiàn)段AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系,即可得出中線(xiàn)AD的取值范圍是 2<AD<82<AD<8.
【方法感悟】
當(dāng)條件中出現(xiàn)“中點(diǎn)”,“中線(xiàn)”等條件時(shí),可以考慮作“輔助線(xiàn)”——把中線(xiàn)延長(zhǎng)一倍,構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形中,這種作輔助線(xiàn)的方法稱(chēng)為“中線(xiàn)加倍”法.
【問(wèn)題解決】
(2)如圖2,在△ABC中,∠A=90°,D是BC邊的中點(diǎn),∠EDF=90°,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.請(qǐng)判斷BE,CF,EF的數(shù)量關(guān)系,并說(shuō)明理由.
【問(wèn)題拓展】
(3)如圖3,△ABC中,∠B=90°,AB=3,AD是△ABC的中線(xiàn),CE⊥BC,CE=5,且∠ADE=90°,請(qǐng)直接寫(xiě)出AE的長(zhǎng).
【考點(diǎn)】三角形綜合題.
【答案】SAS;△EDB;BE;2<AD<8
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/3 20:0:1組卷:398引用:2難度:0.1
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:185引用:3難度:0.2 -
2.已知A(0,4),B(-4,0),D(9,4),C(12,0),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線(xiàn)段AD上,以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動(dòng):動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在線(xiàn)段BC上,以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)P、Q同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(秒).
(1)當(dāng)t=秒時(shí),PQ平分線(xiàn)段BD;
(2)當(dāng)t=秒時(shí),PQ⊥x軸;
(3)當(dāng)時(shí),求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:145引用:3難度:0.1 -
3.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點(diǎn)F在BC上,點(diǎn)A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點(diǎn)F順時(shí)針旋轉(zhuǎn)(當(dāng)點(diǎn)D落在射線(xiàn)FB上時(shí)停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=°時(shí),DF∥AC;當(dāng)∠AFD=°時(shí),DF⊥AB;
(2)在旋轉(zhuǎn)過(guò)程中,DF與AB的交點(diǎn)記為P,如圖2,若△AFP有兩個(gè)內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點(diǎn)M、N時(shí),如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說(shuō)明理由.發(fā)布:2024/12/23 18:30:1組卷:1693引用:10難度:0.1