試卷征集
加入會(huì)員
操作視頻

在電腦課上,小明將圖中的扇形分割,圖①是一個(gè)扇形AOB,將其作如下劃分:
第一次劃分:如圖②所示,以O(shè)A的一半OA1為半徑畫弧,再作LAOB的平分線,得到扇形的總數(shù)為6個(gè),分別為扇形AOB、扇形AOC、扇形COB、扇形A1OB1,扇形A1OC1,扇形C1OB1;
第二次劃分:如圖③所示,在扇形C1OB1中,按上述劃分方式繼續(xù)劃分,可以得到扇形的總數(shù)為11個(gè);
第三次劃分:如圖④所示;…
依次劃分下去.菁優(yōu)網(wǎng)
(1)根據(jù)題意,完成下表:
劃分次數(shù)扇形總個(gè)數(shù)
16
211
3
4
n
(2)根據(jù)上表,請(qǐng)你判斷按上述劃分方式,能否得到扇形的總數(shù)為2013個(gè)?為什么?

【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:75引用:3難度:0.3
相似題
  • 菁優(yōu)網(wǎng)1.將楊輝三角中的每一個(gè)數(shù)都換成分?jǐn)?shù),得到一個(gè)如圖所示的分?jǐn)?shù)三角形,稱萊布尼茨三角形.若用有序?qū)崝?shù)對(duì)(m,n)表示第m行,從左到右第n個(gè)數(shù),如(4,3)表示分?jǐn)?shù)
    1
    12
    ,那么(8,3)表示的分?jǐn)?shù)是( ?。?/h2>

    發(fā)布:2024/11/5 8:0:2組卷:197引用:1難度:0.5
  • 2.“科赫曲線”是瑞典數(shù)學(xué)家科赫1904構(gòu)造的圖案(又名“雪花曲線”).其過程是:
    第一次操作,將一個(gè)等邊三角形每邊三等分,再以中間一段為邊向外作等邊三角形,然后去掉中間一段,得到邊數(shù)為12的圖②.
    第二次操作,將圖②中的每條線段三等分,重復(fù)上面的操作,得到邊數(shù)為48的圖③.
    如此循環(huán)下去,得到一個(gè)周長(zhǎng)無限的“雪花曲線”.操作n次后所得“雪花曲線”的邊數(shù)是

    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/2 8:0:1組卷:156引用:3難度:0.5
  • 3.如圖,“科赫曲線”是瑞典數(shù)學(xué)家科赫1904構(gòu)造的圖案(又名“雪花曲線”).其過程是:第一次操作,將一個(gè)等邊三角形每邊三等分,再以中間一段為邊向外作等邊三角形,然后去掉中間一段,得到邊數(shù)為12的圖②.第二次操作,將圖②中的每條線段三等分,重復(fù)上面的操作,得到邊數(shù)為48的圖③.如此循環(huán)下去,得到一個(gè)周長(zhǎng)無限的“雪花曲線”.若操作4次后所得“雪花曲線”的邊數(shù)是(  )
    菁優(yōu)網(wǎng)

    發(fā)布:2024/11/2 8:0:1組卷:1234引用:5難度:0.3
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營(yíng)許可證出版物經(jīng)營(yíng)許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正