綜合與實(shí)踐——折紙中的數(shù)學(xué).
折紙是同學(xué)們喜歡的手工活動(dòng)之一,通過折紙我們可以得到許多美麗的圖形,折紙的過程還蘊(yùn)含著豐富的數(shù)學(xué)知識(shí).將長(zhǎng)方形紙片(長(zhǎng)方形的對(duì)邊平行且相等,四個(gè)內(nèi)角都是直角),按下列要求折疊.

(1)如圖1,將長(zhǎng)方形紙條沿直線EF折疊,點(diǎn)C落在C′處,點(diǎn)D落在D′處,C'F交AD于點(diǎn)G.
①若∠1=35°,則∠AGC′=110°110°;
②若∠AGC′=3∠1,求∠AGC′的度數(shù).
(2)在圖1的基礎(chǔ)上,將四邊形ABFG沿某一直線折疊,使得AG或BF落在直線GF上,折痕為MN,則折痕MN、EF有怎樣的位置關(guān)系,并說明理由.
(3)若AB=3,BC=12,按圖2方式折疊,點(diǎn)C′、G、F、A′在一條直線上.若四邊形B′A′FH的面積記為S1,四邊形D′EGC′的面積記為S2,則S1+S2的值是否有最大值?若有,求出這個(gè)值;若沒有,請(qǐng)說明理由.
【考點(diǎn)】四邊形綜合題.
【答案】110°
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:184引用:3難度:0.1
相似題
-
1.如圖,四邊形ABCD中,∠A=∠B=90°,AD=2,AB=5,BC=3.
(1)如圖①,P為AB上的一個(gè)動(dòng)點(diǎn),以PD,PC為邊作?PCQD.
①請(qǐng)問四邊形PCQD能否成為矩形?若能,求出AP的長(zhǎng);若不能,請(qǐng)說明理由.
②填空:當(dāng)AP=時(shí),四邊形PCQD為菱形;
③填空:當(dāng)AP=時(shí),四邊形PCQD有四條對(duì)稱軸.
(2)如圖②,若P為AB上的一點(diǎn),以PD,PC為邊作?PCQD,請(qǐng)問對(duì)角線PQ的長(zhǎng)是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說明理由.發(fā)布:2025/5/24 11:0:1組卷:701引用:3難度:0.2 -
2.(1)證明推斷:如圖(1),在正方形ABCD中,點(diǎn)E,Q分別在邊BC,AB上,DQ⊥AE于點(diǎn)O,點(diǎn)G,F(xiàn)分別在邊CD,AB上,GF⊥AE.求證:AE=FG;
(2)類比探究:如圖(2),在矩形ABCD中,=k(k為常數(shù)).將矩形ABCD沿GF折疊,使點(diǎn)A落在BC邊上的點(diǎn)E處,得到四邊形FEPG,EP交CD于點(diǎn)H,連接AE交GF于點(diǎn)O.試探究GF與AE之間的數(shù)量關(guān)系,并說明理由;BCAB
(3)拓展應(yīng)用:在(2)的條件下,連接CP,當(dāng)時(shí)k=,若tan∠CGP=34,GF=243,求CP的長(zhǎng).5發(fā)布:2025/5/24 10:30:2組卷:3153引用:13難度:0.4 -
3.數(shù)學(xué)學(xué)習(xí)總是循序漸進(jìn)、不斷延伸拓展的,數(shù)學(xué)知識(shí)往往起源于人們?yōu)榱私鉀Q某些問題,通過觀察、測(cè)量、思考、猜想出的一些結(jié)論.但是所猜想的結(jié)論不一定都是正確的.人們從已有的知識(shí)出發(fā),經(jīng)過推理、論證后,如果所猜想的結(jié)論在邏輯上沒有矛盾,就可以作為新的推理的前提,數(shù)學(xué)中稱之為定理.
(1)推理證明:
在八年級(jí)學(xué)習(xí)等腰三角形和直角三角形時(shí),借助工具測(cè)量就能夠發(fā)現(xiàn):“直角三角形斜邊上的中線等于斜邊的一半”,當(dāng)時(shí)并未說明這個(gè)結(jié)論的正確性.九年級(jí)學(xué)習(xí)了矩形的判定和性質(zhì)之后,就可以解決這個(gè)問題了.如圖1,在Rt△ABC中,若CD是斜邊AB上的中線,則,請(qǐng)你用矩形的性質(zhì)證明這個(gè)結(jié)論的正確性.CD=12AB
(2)遷移運(yùn)用:利用上述結(jié)論解決下列問題:
①如圖2,在線段BD異側(cè)以BD為斜邊分別構(gòu)造兩個(gè)直角三角形△ABD與△CBD,E、F分別是BD、AC的中點(diǎn),判斷EF與AC的位置關(guān)系并說明理由;
②如圖3,?ABCD對(duì)角線AC、BD相交于點(diǎn)O,分別以AC、BD為斜邊且在同側(cè)分別構(gòu)造兩個(gè)直角三角形△ACE與△BDE,求證:?ABCD是矩形.發(fā)布:2025/5/24 10:30:2組卷:291引用:3難度:0.5