綜合與探究:
如圖1,Rt△AOB的直角頂點O在坐標原點,點A在y軸正半軸上,點B在x軸正半軸上,OA=4,OB=2.將線段AB繞點B順時針旋轉90°得到線段BC,過點C作CD⊥x軸于點D,拋物線y=ax2+3x+c經過點C,與y軸交于點E(0,2),直線AC與x軸交于點H.
(1)求點C的坐標及拋物線的表達式;
(2)如圖2,已知點G是線段AH上的一個動點,過點G作AH的垂線交拋物線于點F(點F在第一象限).設點G的橫坐標為m.
①點G的縱坐標用含m的代數式表示為-13m+4-13m+4;
②如圖3,當直線FG經過點B時,求點F的坐標,判斷四邊形ABCF的形狀并證明結論;
③在②的前提下,連接FH,點N是坐標平面內的點,若以F,H,N為頂點的三角形與△FHC全等,請直接寫出點N的坐標.
1
3
1
3
【考點】二次函數綜合題.
【答案】-m+4
1
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/7 8:0:9組卷:855引用:3難度:0.2
相似題
-
1.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3616引用:36難度:0.4 -
2.已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=
x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.14
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.14發(fā)布:2024/12/23 11:30:2組卷:469引用:24難度:0.1 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內,設點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數)的頂點落在△ADE的內部,則a的取值范圍是( )5發(fā)布:2024/12/26 1:30:3組卷:2654引用:7難度:0.7
把好題分享給你的好友吧~~