試卷征集
加入會員
操作視頻

南宋數(shù)學家楊輝在《詳解九章算術》中提出了高階等差數(shù)列的問題,即一個數(shù)列{an}本身不是等差數(shù)列,但從{an}數(shù)列中的第二項開始,每一項與前一項的差構成等差數(shù)列{bn}(則稱數(shù)列{an}為一階等差數(shù)列),或者{bn}仍舊不是等差數(shù)列,但從{bn}數(shù)列中的第二項開始,每一項與前一項的差構成等差數(shù)列{cn}(則稱數(shù)列{an}為二階等差數(shù)列),依次類推,可以得到高階等差數(shù)列.類比高階等差數(shù)列的定義,我們亦可定義高階等比數(shù)列,設數(shù)列1,1,2,8,64,…是一階等比數(shù)列,則該數(shù)列的第8項是( ?。?/h1>

【考點】類比推理
【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/5 8:0:9組卷:75引用:6難度:0.6
相似題
  • 1.
    x
    +
    π
    4
    ,
    tan
    x
    +
    π
    4
    =
    1
    +
    tanx
    1
    -
    tanx
    ,則y=tanx的周期為π.類比可推出:設x∈R且
    f
    x
    +
    π
    =
    1
    +
    f
    x
    1
    -
    f
    x
    ,則y=f(x)的周期是( ?。?/h2>

    發(fā)布:2025/1/6 8:0:1組卷:36引用:1難度:0.5
  • 2.已知
    tan
    x
    +
    π
    4
    =
    1
    +
    tanx
    1
    -
    tanx
    x
    +
    π
    4
    ,那么函數(shù)y=tanx的周期為π.類比可推出:已知x∈R且
    f
    x
    +
    π
    =
    1
    +
    f
    x
    1
    -
    f
    x
    ,那么函數(shù)y=f(x)的周期是(  )

    發(fā)布:2025/1/6 8:0:1組卷:11引用:1難度:0.7
  • 3.閱讀下表后,請應用類比的思想,得出橢圓中的結論:
                  圓          橢圓

    平面上到動點P到定點O的距離等于定長的點的軌跡 平面上的動點P到兩定點F1,F(xiàn)2的距離之和等于定值2a的點的軌跡(2a>|F1F2|)

    如圖,AB是圓O的直徑,直線AC,BD是圓O過A,B的切線,P是圓O上任意一點,
    CD是過P的切線,則有“PO2=PC?PD”
    橢圓的長軸為AB,O是橢圓的中心,F(xiàn)1,F(xiàn)2是橢圓的焦點,直線AC,BD是橢圓過A,B的切線,P是橢圓上任意一點,CD是過P的切線,則有
     

    發(fā)布:2025/1/28 8:0:2組卷:32引用:2難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正