已知在每一項均不為0的數列{an}中,a1=3,且an+1=pan+tan(p,t為常數,n∈N*),記數列{an}的前n項和為Sn.
(1)當t=0時,求Sn;
(2)當p=12,t=2時,
①求證:數列{lgan+2an-2}為等比數列;
②是否存在正整數m,使得不等式Sn-2n<m對任意n∈N*恒成立?若存在,求出m的最小值;若不存在,請說明理由.
a
n
+
1
=
p
a
n
+
t
a
n
1
2
{
lg
a
n
+
2
a
n
-
2
}
【考點】數列的求和.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:216難度:0.3
相似題
-
1.十九世紀下半葉集合論的創(chuàng)立奠定了現代數學的基礎.著名的“康托三分集”是數學理性思維的構造產物,具有典型的分形特征其操作過程如下:將閉區(qū)間[0,1]均分為三段,去掉中間的區(qū)間段(
,13),記為第一次操作;再將剩下的兩個區(qū)[0,23],[13,1]分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…如此這樣,每次在上一次操作的基礎上,將剩下的各個區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進行下去,以至無窮,剩下的區(qū)間集合即是“康托三分集”.若使去掉的各區(qū)間長度之和不小于23,則需要操作的次數n的最小值為( )(參考數據:lg2=0.3010,lg3=0.4771)910發(fā)布:2024/12/29 13:30:1組卷:143難度:0.6 -
2.設數列{an}的前n項和是Sn,令
,稱Tn為數列a1,a2,…,an的“超越數”,已知數列a1,a2,…,a504的“超越數”為2020,則數列5,a1,a2,…,a504的“超越數”為( ?。?/h2>Tn=S1+S2+?+Snn發(fā)布:2024/12/29 9:0:1組卷:127引用:3難度:0.5 -
3.定義
為n個正數p1,p2,…,pn的“均倒數”.若已知數列{an}的前n項的“均倒數”np1+p2+…+pn,又bn=13n+1,則an+26+1b1b2+…+1b2b3=( ?。?/h2>1b9b10發(fā)布:2024/12/29 11:30:2組卷:120引用:1難度:0.7