已知圓O:x2+y2=4和點(diǎn)M(2,4).
(1)過點(diǎn)M向圓O引切線,求切線的方程.
(2)點(diǎn)N是圓O上任意一點(diǎn),S在線段NM的延長線上,且點(diǎn)M是線段SN的中點(diǎn),求S點(diǎn)運(yùn)動的軌跡E的方程.
(3)設(shè)圓O與x軸交于C,D兩點(diǎn),線段MO上的點(diǎn)T上滿足16TC?DT=CM?MD,若T∈直線l,且直線l與(2)中曲線E交于A,B兩點(diǎn),滿足TA=3AB.試探究是否存在這樣的直線l,若存在,請說明理由并寫出直線l的斜率,若不存在,請說明理由.
16
TC
?
DT
=
CM
?
MD
TA
=
3
AB
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/23 7:0:1組卷:46引用:1難度:0.5
相似題
-
1.動點(diǎn)M(x,y)與定點(diǎn)F(4,0)的距離和它到定直線l:x=
的距離的比是常數(shù)94.43
(1)求動點(diǎn)M的軌跡方程;
(2)直線l:y=kx+b與M的軌跡交于A,B兩點(diǎn),AB的中點(diǎn)坐標(biāo)為(6,2),求直線l的方程.發(fā)布:2024/12/6 23:0:1組卷:281引用:4難度:0.5 -
2.已知F1,F(xiàn)2是橢圓E:
+x2a2=1(a>b>0)的左右焦點(diǎn),過F2作長軸的垂線,在第一象限和橢圓交于點(diǎn)H,且tan∠HF1F2=y2b2.34
(1)求橢圓的離心率;
(2)若橢圓的準(zhǔn)線方程為x=±4,一條過原點(diǎn)O的動直線l1與橢圓交于A,B兩點(diǎn),N為橢圓上滿足|NA|=|NB|的一點(diǎn),試求5+1|OA|2+1|OB|2的值;2|ON|2
(3)設(shè)動直線l2:y=kx+m與橢圓有且只有一個公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q,若x軸上存在一定點(diǎn)M(1,0),使得PM⊥QM,求橢圓的方程.發(fā)布:2024/12/1 8:0:1組卷:29引用:1難度:0.1 -
3.定義:圓錐曲線
的兩條相互垂直的切線的交點(diǎn)Q的軌跡是以坐標(biāo)原點(diǎn)為圓心,C:x2a2+y2b2=1為半徑的圓,這個圓稱為蒙日圓.已知橢圓C的方程為a2+b2,P是直線l:x+2y-3=0上的一點(diǎn),過點(diǎn)P作橢圓C的兩條切線與橢圓相切于M、N兩點(diǎn),O是坐標(biāo)原點(diǎn),連接OP,當(dāng)∠MPN為直角時,則kOP=( ?。?/h2>x25+y24=1發(fā)布:2024/12/3 6:0:1組卷:122引用:3難度:0.6
把好題分享給你的好友吧~~