已知函數f(x)=(x+1x)(x-1)-(x+1)lnx,g(x)=lnxx.
(1)求f(x)的單調區(qū)間;
(2)若存在實數m,使得方程g(x)=m有兩個不相等的實數根x1,x2,求證:g'(x1)+g'(x2)>0.
f
(
x
)
=
(
x
+
1
x
)
(
x
-
1
)
-
(
x
+
1
)
lnx
,
g
(
x
)
=
lnx
x
【考點】利用導數研究函數的單調性.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/5/14 8:0:9組卷:34引用:1難度:0.3
相似題
-
1.已知函數f(x)=x3-2kx2+x-3在R上不單調,則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導的函數f(x)的圖象如圖示,f′(x)為函數f(x)的導數,則關于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:262難度:0.9 -
3.已知函數f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數f(x)在(0,+∞)上單調遞增,求實數a的取值范圍;
(Ⅱ)若函數f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2
把好題分享給你的好友吧~~