閱讀材料:若m2-2mn+2n2-8n+16=0,求m、n的值.
解:∵m2-2mn+2n2-8n+16=0,
∴(m2-2mn+n2)+(n2-8n+16)=0
∴(m-n)2+(n-4)2=0,∴(m-n)2=0,(n-4)2=0,∴n=4,m=4.
根據(jù)你的觀察,探究下面的問題:
(1)已知x2-2xy+2y2+6y+9=0,求xy的值;
(2)已知△ABC的三邊長a、b、c都是正整數(shù),且滿足a2+b2-10a-12b+61=0,求△ABC的最大邊c的值.
【考點】因式分解的應用;非負數(shù)的性質:偶次方.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2172引用:9難度:0.3
相似題
-
1.閱讀下列材料,解決問題:
我們把一個能被17整除的自然數(shù)稱為“節(jié)儉數(shù)”.“節(jié)儉數(shù)”的特征是:若把一個自然數(shù)的個位數(shù)字截去,再把剩下的數(shù)減去截去的那個個位數(shù)字的5倍,如果差是17的整數(shù)倍(包括0),則原數(shù)能被17整除,如果差太大或心算不易看出是否是17的倍數(shù),就繼續(xù)上述的“截尾,倍尾,差尾,驗差”的過程,直到能方便判斷為止.例如:判斷1675282是不是“節(jié)儉數(shù)”,判斷過程:167528-2×5=167518,16751-8×5=16711,1671-1×5=1666,166-6×5=136,到這里如果你仍然觀察不出來,就繼續(xù)13-6×5=-17,-17是17的整數(shù)倍,所以1675282能被17整除,所以1675282是“節(jié)儉數(shù)”.
(1)請用上述方法判斷7259和2098752是否是“節(jié)儉數(shù)”,并說明理由.
(2)一個五位節(jié)儉數(shù),其中千位上的數(shù)字為b,萬位上的數(shù)字為a,且b=a-1,請利用上面方法求出這個數(shù).ab213發(fā)布:2025/6/14 9:0:1組卷:45引用:1難度:0.6 -
2.對于一個自然數(shù)M,將其各數(shù)位上的數(shù)字相加得到一個數(shù),這一過程稱為一次操作,把得到的數(shù)再進行同樣的操作,最終得到一個一位數(shù)N.若N能被5除余2,則我們稱M是“我愛我數(shù)”.
例如:367→3+6+7=16→1+6=7,7÷5=1……2.所以367是“我愛我數(shù)”.
(1)請判斷653和1726是否為“我愛我數(shù)”,并說明理由;
(2)已知一個三位“我愛我數(shù)”S=100a+2b+41(其中1≤a≤9,0≤b≤4,a、b均為整數(shù)),若S與其個位數(shù)字之和能被11整除,請求出所有符合條件的S.發(fā)布:2025/6/14 18:30:4組卷:144引用:1難度:0.4 -
3.已知△ABC中,其三邊a、b,c滿足a2+b2+c2=6a+8b+10c-50,則△ABC的周長為( ?。?/h2>
發(fā)布:2025/6/14 20:30:2組卷:826引用:6難度:0.7