已知△ABC中,∠BAC=90°,AB=AC,點D為直線BC上的一動點(點D不與點B、C重合),以AD為邊作△ADE,使∠DAE=90°,AE=AD,連接CE.
發(fā)現(xiàn)問題:
(1)如圖1,當點D在邊BC上時,請寫出BD和CE之間的位置關系為 BD⊥CEBD⊥CE,并猜想BD和DE、CD之間的數(shù)量關系:DE2=CD2+BD2DE2=CD2+BD2.
嘗試探究:
(2)如圖2,當點D在邊BC的延長線上且其他條件不變時,(1)中BD和CE之間的位置關系,BD和DE、CD之間的數(shù)量關系是否成立?若成立,請證明;若不成立,請寫出新的數(shù)量關系,并說明理由.
拓展延伸:
(3)當點D在射線CB上且其他條件不變時,若BA=7,CE=52,直接寫出線段ED的長.

CE
=
5
2
【考點】三角形綜合題.
【答案】BD⊥CE;DE2=CD2+BD2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/9/29 22:0:2組卷:211引用:3難度:0.4
相似題
-
1.如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,動點P從點A出發(fā)沿線段AB以每秒3個單位長的速度運動至點B,過點P作PQ⊥AB交射線AC于點Q,設點P的運動時間為t秒(t>0).
(1)線段AQ的長為 ,線段PQ的長為 .(用含t的代數(shù)式表示)
(2)當△APQ與△ABC的周長的比為1:4時,求t的值.
(3)設△APQ與△ABC重疊部分圖形的面積為S,求S與t之間的函數(shù)關系式.發(fā)布:2025/6/25 4:0:1組卷:19引用:1難度:0.3 -
2.已知等腰直角△ABC的直角邊AB=BC=10cm,點P,Q分別從A.C兩點同時出發(fā),均以1cm/s的相同速度做直線運動,已知P沿射線AB運動,Q沿邊BC的延長線運動,PQ與直線AC相交于點D.設P點運動時間為t,△PCQ的面積為S.
(1)求出S關于t的函數(shù)關系式.
(2)當點P在線段AB上時,點P運動幾秒時,S△PCQ=S△ABC?14
(3)作PE⊥AC于點E,當點P.Q運動時,線段DE的長度是否改變?證明你的結論.發(fā)布:2025/6/23 23:0:10組卷:243引用:1難度:0.1 -
3.如圖,在△ABC中,BC=5,AD⊥BC,BE⊥AC,AD,BE相交于點O,BD:CD=2:3,且AE=BE.
(1)求線段AO的長;
(2)動點P從點O出發(fā),沿線段OA以每秒1個單位長度的速度向終點A運動,動點Q從點B出發(fā)沿射線BC以每秒4個單位長度的速度運動.P,Q兩點同時出發(fā),當點P到達A點時,P,Q兩點同時停止運動.設點P的運動時間為t秒,△AOQ的面積為S,請用含t的式子表示S,并直接寫出相應的t的取值范圍;
(3)在(2)的條件下,點F是直線AC上的一點,且CF=BO,是否存在t值,使以點B,O,P為頂點的三角形與以點F,C,Q為頂點的三角形全等?若存在,請直接寫出符合條件的t值;若不存在,請說明理由.發(fā)布:2025/6/25 5:0:1組卷:191引用:3難度:0.4