【問題提出】有編號分別為1,2,3,…,n(n為正整數(shù),且n≥1)的n個球,甲、乙輪流抓,每次可以抓1個球或相連編號的2個球.甲先抓,規(guī)定誰抓到最后一次誰獲勝.甲第1次應(yīng)該怎樣抓才能獲勝?
【問題探究】我們采取一般問題特殊化的策略,先從最簡單的情形入手,再逐次遞進(jìn),從中找規(guī)律.
(1)如圖①,當(dāng)n=1時,甲一次抓一個球就可以抓完,顯然甲獲勝;
(2)如圖②,當(dāng)n=2時,甲一次抓編號相連的1號和2號2個球就可以抓完,所以甲獲勝;
(3)如圖③,當(dāng)n=3時,甲第1次先抓2號球,乙第1次無論抓1號球還是3號球,最后還剩1個球,甲第2次抓就可以抓完,所以甲獲勝;
(4)如圖④,當(dāng)n=4時,甲第1次先抓編號相連的2號和3號球,乙第1次無論抓1號球還是4號球,最后還剩1個球,甲第2次抓就可以抓完,所以甲獲勝;
(5)如圖⑤,當(dāng)n=5時,甲第1次先抓3號球,乙第1次抓有兩類抓法:一類:一次抓1個球.若乙第1次從1號和2號中任抓1個球,則甲第2次從4號和5號中任抓1個球,乙第2次無論抓那個球,最后還剩1個球,甲第3次抓就可以抓完,甲獲勝.同理,若乙第1次從4號和5號中任抓1個球,甲也會獲勝.二類:一次抓相連編號的2個球.若乙第1次抓編號相連的1號和2號球,則甲第2次抓編號相連的4號和5號球就可以抓完,甲獲勝.同理,若乙第1次抓編號相連的4號和5號球,甲也會獲勝.
(6)如圖⑥,當(dāng)n=6時,甲第1次應(yīng)該怎樣抓第1次應(yīng)該抓 3號球和4號球3號球和4號球號球;
(7)如圖⑦,當(dāng)n=7時,甲要獲勝,第1次應(yīng)該抓 4號球4號球號球;
【問題解決】有編號分別為1,2,3,…,n(n為正整數(shù),且n≥1)的n個球,甲、乙輪流抓,每次可以抓1個球或相連編號的2個球.甲先抓,規(guī)定誰抓到最后一次誰獲勝.甲第1次應(yīng)該怎樣抓才能獲勝?(只寫出結(jié)論)
【拓展應(yīng)用】有編號分別為1,2,3,…,(n為正整數(shù),且n≥1)的n個球,甲、乙輪流抓,每次可以抓1個球或相連編號的2個球.甲先抓,規(guī)定誰抓到最后一次誰獲勝.若甲第1次抓2023號球,最后甲獲勝,則n=40474047.
【考點】規(guī)律型:圖形的變化類.
【答案】3號球和4號球;4號球;4047
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/8 3:0:1組卷:103引用:1難度:0.7
相似題
-
1.下列圖形都是由同樣大小的平行四邊形按一定的規(guī)律組成,其中,第①個圖形中一共有1個平行四邊形,第②個圖形中一共有5個平行四邊形,第③個圖形中一共有11個平行四邊形,…則第⑥個圖形中平行四邊形的個數(shù)為( ?。?br />
發(fā)布:2024/12/23 11:0:1組卷:545引用:44難度:0.9 -
2.把黑色三角形按如圖所示的規(guī)律拼圖案,其中第①個圖案中有3個黑色三角形,第②個圖案中有7個黑色三角形,第③個圖案中有11個黑色三角形,……,按此規(guī)律排列下去,則第⑧個圖案中黑色三角形的個數(shù)為( )
發(fā)布:2024/12/16 2:30:1組卷:89引用:3難度:0.6 -
3.用棋子擺出下列一組三角形,三角形每邊有n枚棋子,每個三角形的棋子總數(shù)是S.按此規(guī)律推斷,當(dāng)三角形邊上有n枚棋子時,該三角形的棋子總數(shù)S等于( ?。?br />
發(fā)布:2024/12/16 5:30:2組卷:319引用:15難度:0.9