如圖,已知拋物線y=-14x2+bx+4與x軸相交于A、B兩點,與y軸相交于點C,若已知A點的坐標為A(-2,0).
(1)求拋物線的解析式及它的對稱軸方程;
(2)求點C的坐標,連接AC、BC并求線段BC所在直線的解析式;
(3)試判斷△AOC與△COB是否相似?并說明理由;
(4)在拋物線的對稱軸上是否存在點Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點坐標;若不存在,請說明理由.
1
4
【考點】二次函數綜合題.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:716引用:57難度:0.5
相似題
-
1.如圖,在平面直角坐標系中,拋物線y=-
x2+14x+4與x軸交于A,B兩點,與y軸交于點C,拋物線的對稱軸與x軸交于點D.32
(1)點B與點D的坐標;
(2)點P是第一象限內拋物線上位于對稱軸右側的一個動點,設點P點的橫坐標為m,且S△CDP=S△ABC,求m的值;1120
(3)K是拋物線上一個動點,在平面直角坐標系中是否存在點H,使B、C、K、H為頂點的四邊形成為矩形?若存在,直接寫出點H的坐標;若不存在,說明理由.發(fā)布:2025/6/21 23:0:2組卷:113引用:1難度:0.3 -
2.如圖,在平面直角坐標系中,拋物線y=ax2+bx-4(a≠0)與x軸交于A、B兩點,與y軸交于點C,連接AC,已知tan∠CAO=2,點B(-4,0).
(1)求這個拋物線的解析式;
(2)在拋物線上B,C兩點間有一動點P,點E為線段AC的中點,連接BE、BP、PC,求四邊形BPCE面積的最大值;
(3)將拋物線沿射線CA方向平移個單位長度得到新拋物線y',新拋物線y'與原拋物線對稱軸交于點F,點G為直線y=1上的一個動點,H為平面內任意一點,請直接寫出點G的橫坐標,使得以點F,B,G,H為頂點構成的四邊形是以BF為邊的菱形.5發(fā)布:2025/6/21 23:0:2組卷:318引用:3難度:0.3 -
3.(1)在△ABC中,AB=AC=5,BC=8,點P、Q分別在射線CB、AC上(點P不與點C、點B重合),且保持∠APQ=∠ABC.
①若點P在線段CB上(如圖),且BP=6,求線段CQ的長;
②若BP=x,CQ=y,求y與x之間的函數關系式,并寫出函數的定義域;
(2)正方形ABCD的邊長為5(如圖),點P、Q分別在直線CB、DC上(點P不與點C、點B重合),且保持∠APQ=90度.當CQ=1時,寫出線段BP的長(不需要計算過程,請直接寫出結果).發(fā)布:2025/6/21 20:0:2組卷:599引用:4難度:0.4