定義:兩個頂角相等且頂角頂點重合的等腰三角形稱為“同根等腰三角形”,如圖1,OD=OE,OA=OB,O為重合的頂角頂點,所以△ODE與△OAB是“同根等腰三角形”.
(1)將圖1的△ODE繞點O旋轉,使點D在BO的延長線上,如圖2,求證:DE∥AB.
(2)如圖3,△ODE與△OAB是“同根等腰三角形”,且∠DOE=∠AOB=90°,連接AE、BD,試探究AE和BD的位置關系,并說明理由.
(3)在圖3中,連接BE、AD,若OD=3,OA=5,∠BED=135°,求AD2的值.
【考點】幾何變換綜合題.
【答案】(1)證明見解答過程;
(2)AE⊥BD,理由見解答過程;
(3)AD2的值是52.
(2)AE⊥BD,理由見解答過程;
(3)AD2的值是52.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/7/24 8:0:9組卷:226引用:2難度:0.2
相似題
-
1.(1)如圖1,在平面直角坐標系中,將直角三角形的直角頂點放在點P(2,2)處,若A(0,2),則B的坐標為 ;
(2)將直角三角形繞點P逆時針旋轉,如圖2,兩直角邊與坐標軸分別交于點AB,求OA+OB的值;
(3)將直角三角形繞點P逆時針旋轉,如圖3,兩直角邊所在的直線與坐標軸交于A,B兩點,探究OB與OA的數(shù)量關系.發(fā)布:2025/6/9 5:0:1組卷:40引用:1難度:0.2 -
2.閱讀下面的材料,并解決問題:
(1)如圖1,等邊△ABC內有一點P,若點P到頂點A、B、C的距離分別是3、4、5,求∠APB的度數(shù).由于PA、PB、PC不在一個三角形中,為了解決本題我們可以將△ABP繞頂點A旋轉到△ACP′處,此時△ACP≌.這樣,就可以利用全等三角形知識,將三條線段的長度轉化到一個三角形中從而求出∠APB的度數(shù);(求∠APB的度數(shù))
(2)請你利用第(1)題解答的思想方法,解答下面的問題:如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:EF2=BE2+FC2.發(fā)布:2025/6/9 5:30:2組卷:189引用:2難度:0.2 -
3.如圖1,在△ABC中,AE⊥BC于點E,AE=BE,D是AE上的一點,且DE=CE,連接BD,CD.
(1)試判斷BD與AC的位置關系是:;數(shù)量關系是:;
(2)如圖2,若將△DCE繞點E旋轉一定的角度后,試判斷BD與AC的位置關系和數(shù)量關系是否發(fā)生變化,并說明理由;
(3)如圖3,若將(2)中的等腰直角三角形都換成等邊三角形,其他條件不變.
①試猜想BD與AC的數(shù)量關系為:;
②你能求出BD與AC的夾角度數(shù)嗎?如果能,請直接寫出夾角度數(shù);如果不能,請說明理由.發(fā)布:2025/6/9 6:30:1組卷:724引用:2難度:0.3