研究函數(shù)首先要研究其性質(zhì)和圖象,然后利用性質(zhì)和圖象來(lái)解決問(wèn)題如探究函數(shù)f(x)=x2+1x2.
(1)探究性質(zhì)
(?。┣骹(x)的定義域并判斷f(x)奇偶性;
(ⅱ)討論f(x)的單調(diào)性;
(2)解關(guān)于x的不等式:f(-12)-f(log2x)<0.
f
(
x
)
=
x
2
+
1
x
2
f
(
-
1
2
)
-
f
(
log
2
x
)
<
0
【考點(diǎn)】奇偶性與單調(diào)性的綜合.
【答案】(1)(?。┒x域?yàn)閧x|x≠0},f(x)為偶函數(shù);
(ⅱ)當(dāng)x∈(-∞,-1)時(shí),函數(shù)f(x)單調(diào)遞減;當(dāng)x∈[-1,0)時(shí),函數(shù)f(x)單調(diào)遞增;
當(dāng)x∈(0,1]時(shí),函數(shù)f(x)單調(diào)遞減;當(dāng)x∈(1,+∞)時(shí),函數(shù)f(x)單調(diào)遞增.
(2)(4,+∞)∪(1,)∪(,1)∪(0,).
(ⅱ)當(dāng)x∈(-∞,-1)時(shí),函數(shù)f(x)單調(diào)遞減;當(dāng)x∈[-1,0)時(shí),函數(shù)f(x)單調(diào)遞增;
當(dāng)x∈(0,1]時(shí),函數(shù)f(x)單調(diào)遞減;當(dāng)x∈(1,+∞)時(shí),函數(shù)f(x)單調(diào)遞增.
(2)(4,+∞)∪(1,
2
2
2
1
4
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:34引用:2難度:0.6
相似題
-
1.設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時(shí),f(x)是單調(diào)函數(shù),則滿(mǎn)足f(x)=f(
)的所有x之和為( )x+3x+4A.-8 B.-3 C.8 D.3 發(fā)布:2024/12/29 13:30:1組卷:119引用:8難度:0.7 -
2.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,1)上單調(diào)遞增的函數(shù)是( ?。?/h2>
A.y=x?|x| B.y=sinx C. y=(12)|x|D.y=-cos(π?x) 發(fā)布:2024/12/29 4:0:1組卷:30引用:2難度:0.9 -
3.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x∈(0,+∞)時(shí),f(x)=2log2(2x+1)-1,則下列說(shuō)法正確的是( ?。?/h2>
A. f(-72)=5B.當(dāng)x∈(-∞,0)時(shí),f(x)=1-2log2(-2x+1) C.f(x)在R上單調(diào)遞增 D.不等式f(x)≥1的解集為 [12,+∞)發(fā)布:2024/12/28 23:30:2組卷:69引用:8難度:0.6
相關(guān)試卷