已知集合S={1,2,…,n}(n≥3且n∈N*),A={a1,a2,…,am},且A?S.若對(duì)任意ai∈A,aj∈A(1≤i≤j≤m),當(dāng)ai+aj≤n時(shí),存在ak∈A(1≤k≤m),使得ai+aj=ak,則稱A是S的m元完美子集.
(Ⅰ)判斷下列集合是否是S={1,2,3,4,5}的3元完美子集,并說(shuō)明理由;
①A1={1,2,4};
②A2={2,4,5}.
(Ⅱ)若A={a1,a2,a3}是S={1,2,…,7}的3元完美子集,求a1+a2+a3的最小值;
(Ⅲ)若A={a1,a2,?,am}是S={1,2,…,n}(n≥3且n∈N*)的m元完美子集,求證:a1+a2+…+am≥m(n+1)2,并指出等號(hào)成立的條件.
m
(
n
+
1
)
2
【考點(diǎn)】數(shù)列與函數(shù)的綜合.
【答案】(Ⅰ)①A1不是S的3元完美子集;②A2是S的3元完美子集;理由見(jiàn)解析.
(Ⅱ)12.
(Ⅲ)證明見(jiàn)解析;等號(hào)成立的條件是且.
(Ⅱ)12.
(Ⅲ)證明見(jiàn)解析;等號(hào)成立的條件是
a
1
=
n
+
1
m
+
1
∈
N
*
a
i
=
(
n
+
1
)
i
m
+
1
(
2
≤
i
≤
m
)
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:246引用:6難度:0.3
相似題
-
1.已知一組2n(n∈N*)個(gè)數(shù)據(jù):a1,a2,…,a2n,滿足:a1≤a2≤…≤a2n,平均值為M,中位數(shù)為N,方差為s2,則( )
A.a(chǎn)n≤M≤an+1 B.a(chǎn)n≤N≤an+1 C.函數(shù) 的最小值為2ns2f(x)=2n∑i=1(x-ai)2D.若a1,a2,…,a2n成等差數(shù)列,則M=N 發(fā)布:2024/12/29 7:30:2組卷:54引用:4難度:0.5 -
2.已知點(diǎn)A
是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點(diǎn),等比數(shù)列an的前n項(xiàng)和為f(n)-c,數(shù)列bn(bn>0)的首項(xiàng)為c,且前n項(xiàng)和Sn滿足(1,13)(n≥2).Sn-Sn-1=Sn+Sn-1
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式.
(2)若數(shù)列的前n項(xiàng)和為Tn,問(wèn)滿足Tn{1bnbn+1}的最小整數(shù)是多少?>10002011
(3)若,求數(shù)列Cn的前n項(xiàng)和Pn.Cn=-2bnan發(fā)布:2025/1/12 8:0:1組卷:36引用:3難度:0.1 -
3.已知公比為q的正項(xiàng)等比數(shù)列{an},其首項(xiàng)a1>1,前n項(xiàng)和為Sn,前n項(xiàng)積為Tn,且函數(shù)f(x)=x(x+a1)(x+a2)?(x+a9)在點(diǎn)(0,0)處切線斜率為1,則( ?。?/h2>
A.?dāng)?shù)列{an}單調(diào)遞增 B.?dāng)?shù)列{lgan}單調(diào)遞減 C.n=4或5時(shí),Tn取值最大 D. Sn<1q4(1-q)發(fā)布:2024/12/29 10:30:1組卷:35引用:3難度:0.5