已知函數(shù)f(x)=a(lnxx+1).(其中a為非零實數(shù))
(1)討論f(x)的單調性:
(2)若函數(shù)g(x)=ex-f(x)(e 為自然對數(shù)的底數(shù))有兩個零點x1,x2,求證:x1x2>e2-(x1+x2).
f
(
x
)
=
a
(
lnx
x
+
1
)
x
1
x
2
>
e
2
-
(
x
1
+
x
2
)
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:107引用:1難度:0.4
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調,則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導數(shù),則關于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:262引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調遞增,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2
把好題分享給你的好友吧~~