試卷征集
加入會(huì)員
操作視頻

綜合與實(shí)踐
問(wèn)題背景:
我們知道,三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半,如何證明角形中位線定理呢?

已知:如圖1,在△ABC中,D、E分別是AB、AC的中點(diǎn).
求證:DE∥BC.
DE
=
1
2
BC

思路分析:?jiǎn)栴}中既要證明兩條線段所在的直線平行,又要證明其中一條線段的長(zhǎng)等于另一條線段長(zhǎng)的一半,我們可以用“倍長(zhǎng)法”將DE延長(zhǎng)一倍:即延長(zhǎng)DE到F.使得EF=DE,連接FC,DC,AF,通過(guò)證明四邊形ADCF與四邊形DBCF是平行四邊形從而得出最后結(jié)論.
問(wèn)題解決:
(1)上述材料中“倍長(zhǎng)法”體現(xiàn)的數(shù)學(xué)思想主要是
B
B
.(填入選項(xiàng)前的字母代號(hào)即可)
A.?dāng)?shù)形結(jié)合思想;B.轉(zhuǎn)化思想;C.分類討論思想;D.方程思想.
(2)請(qǐng)根據(jù)以上思路分析,完成”三角形中位線定理”的證明過(guò)程.
方法遷移:
(3)如圖3,四邊形ABCD和DEFG均為正方形,連接AG,CE,N是AG的中點(diǎn),連接DN,已知線段DN=2,請(qǐng)求出線段CE的長(zhǎng).

【考點(diǎn)】四邊形綜合題
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/7 8:0:9組卷:334引用:4難度:0.2
相似題
  • 1.已知△ABC是等邊三角形,四邊形ADEF是菱形,∠ADE=120°(AD>AB).

    (1)如圖①,當(dāng)AD與邊BC相交,點(diǎn)D與點(diǎn)F在直線AC的兩側(cè)時(shí),BD與CF的數(shù)量關(guān)系為
     

    (2)將圖①中的菱形ADEF繞點(diǎn)A旋轉(zhuǎn)α(0°<α<180°),如圖②.
    Ⅰ.判斷(1)中的結(jié)論是否仍然成立,請(qǐng)利用圖②證明你的結(jié)論.
    Ⅱ.若AC=4,AD=6,當(dāng)△ACE為直角三角形時(shí),直接寫出CE的長(zhǎng)度.

    發(fā)布:2025/6/25 7:30:2組卷:365引用:4難度:0.1
  • 2.探究問(wèn)題:
    (1)方法感悟:
    如圖①,在正方形ABCD中,點(diǎn)E,F(xiàn)分別為DC,BC邊上的點(diǎn),且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
    感悟解題方法,并完成下列填空:
    證明:延長(zhǎng)CB到G,使BG=DE,連接AG,
    ∵四邊形ABCD為正方形,
    ∴AB=AD,∠ABC=∠D=90°,
    ∴∠ABG=∠D=90°,
    ∴△ADE≌△ABG.
    ∴AG=AE,∠1=∠2;
    ∵四邊形ABCD為正方形,
    ∴∠BAD=90°,
    ∵∠EAF=45°,
    ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
    ∵∠1=∠2,
    ∴∠1+∠3=45°.
    即∠GAF=∠

    又AG=AE,AF=AF,
    ∴△GAF≌

    ∴FG=EF,
    ∵FG=FB+BG,
    又BG=DE,
    ∴DE+BF=EF.
    變化:在圖①中,過(guò)點(diǎn)A作AM⊥EF于點(diǎn)M,請(qǐng)直接寫出AM和AB的數(shù)量關(guān)系
    ;
    (2)方法遷移:

    如圖②,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=
    1
    2
    ∠BAD,連接EF,過(guò)點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想DF,BE,EF之間有何數(shù)量關(guān)系,并證明你的猜想.試猜想AM與AB之間的數(shù)量關(guān)系,并證明你的猜想.
    (3)問(wèn)題拓展:
    如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點(diǎn),滿足∠EAF=
    1
    2
    ∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時(shí),可使得DE+BF=EF.請(qǐng)直接寫出你的猜想(不必說(shuō)明理由).猜想:∠B與∠D滿足關(guān)系:

    發(fā)布:2025/6/24 19:0:1組卷:881引用:1難度:0.1
  • 3.如圖,四邊形ABCD是正方形,E是正方形ABCD內(nèi)一點(diǎn),F(xiàn)是正方形ABCD外一點(diǎn),連接BE、CE、DE、BF、CF、EF.
    (1)若∠EDC=∠FBC,ED=FB,試判斷△ECF的形狀,并說(shuō)明理由.
    (2)在(1)的條件下,當(dāng)BE:CE=1:2,∠BEC=135°時(shí),求BE:BF的值.
    (3)在(2)的條件下,若正方形ABCD的邊長(zhǎng)為(3
    3
    +
    7
    )cm,∠EDC=30°,求△BCF的面積.

    發(fā)布:2025/6/24 17:30:1組卷:59引用:1難度:0.5
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正