如圖,AD∥BC,∠FAD=∠C,∠B=60°.
(1)則∠C=6060°;
(2)如果DE是∠ADC的平分線,那么DE與AB平行嗎?請(qǐng)說明理由.
【考點(diǎn)】平行線的判定與性質(zhì).
【答案】60
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/6 6:0:1組卷:31引用:2難度:0.7
相似題
-
1.幾何說理填空:如圖,F(xiàn)是BC上一點(diǎn),F(xiàn)G⊥AC于點(diǎn)G,H是AB上一點(diǎn),HE⊥AC于點(diǎn)E,∠1=∠2,求證:DE∥BC.
證明:連接EF
∵FG⊥AC,HE⊥AC,
∴∠FGC=∠HEC=90°( ).
∴∥( ).
∴∠3=∠( ).
又∵∠1=∠2,
∴∠1+∠3=∠2+∠4.
即∠DEF=∠EFC
∴DE∥BC( ).發(fā)布:2025/6/8 3:30:1組卷:1052引用:10難度:0.7 -
2.已知:如圖,∠1=∠2.求證:∠3+∠4=180°
證明:∵∠1=∠2
∴a∥b ()
∴∠3+∠5=180° ()
又∵∠4=∠5()
∴∠3+∠4=180°發(fā)布:2025/6/8 3:30:1組卷:158引用:2難度:0.8 -
3.完成下面的證明:
如圖,已知∠1、∠2互為補(bǔ)角,且∠3=∠B,
求證:∠AED=∠ACB.
證明:∵∠1+∠2=180°,∠2+∠4=180°
∴∠1=∠4 ()
∴AB∥EF()
∴∠3=()
又∠3=∠B
∴∠B=()
∴DE∥BC ()
∴∠AED=∠ACB ()發(fā)布:2025/6/8 4:0:1組卷:766引用:9難度:0.6