李華在計算時,探究出了一個“裂項”的方法,如:11×2+12×3+13×4=1-12+12-13+13-14=1-14=34,利用上面這個運算規(guī)律解決以下問題:
(1)求15×6+16×7+17×8的值;
(2)證明:11×2+12×3+13×4+?+1(n-1)n+1n(n+1)<1;
(3)解方程:13x+115x+135x+163x=1x+1.
1
1
×
2
+
1
2
×
3
+
1
3
×
4
=
1
-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=
1
-
1
4
=
3
4
1
5
×
6
+
1
6
×
7
+
1
7
×
8
1
1
×
2
+
1
2
×
3
+
1
3
×
4
+
?
+
1
(
n
-
1
)
n
+
1
n
(
n
+
1
)
1
3
x
+
1
15
x
+
1
35
x
+
1
63
x
=
1
x
+
1
【考點】解分式方程;有理數的加減混合運算.
【答案】(1);
(2)證明過程見解答;
(3)x=.
3
40
(2)證明過程見解答;
(3)x=
4
5
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:469引用:1難度:0.5
相似題
-
1.閱讀下列材料:
在學習“分式方程及其解法”過程中,老師提出一個問題:若關于x的分式方程+ax-1=1的解為正數,求a的取值范圍?31-x
經過小組交流討論后,同學們逐漸形成了兩種意見:
小明說:解這個關于x的分式方程,得到方程的解為x=a-2.由題意可得a-2>0,所以a>2,問題解決.
小強說:你考慮的不全面.還必須保證a≠3才行.
老師說:小強所說完全正確.
請回答:小明考慮問題不全面,主要體現(xiàn)在哪里?請你簡要說明:
完成下列問題:
(1)已知關于x的方程=1的解為負數,求m的取值范圍;2mx-1x+2
(2)若關于x的分式方程+3-2xx-3=-1無解.直接寫出n的取值范圍.2-nx3-x發(fā)布:2025/6/3 10:30:2組卷:3224引用:3難度:0.1 -
2.解分式方程:
.x-1x+3+3x-2=1發(fā)布:2025/6/3 11:30:1組卷:1482引用:7難度:0.5 -
3.解方程:
(1);2x-2=1x
(2).xx-2-1=6x2-4發(fā)布:2025/6/3 11:30:1組卷:329引用:2難度:0.8