當(dāng)前位置:
試題詳情
設(shè)雙曲線與橢圓x227+y236=1有共同的焦點,且與橢圓相交,一個交點的坐標(biāo)為(15,4),則此雙曲線的標(biāo)準(zhǔn)方程是y24-x25=1y24-x25=1.
x
2
27
y
2
36
15
y
2
4
-
x
2
5
=
1
y
2
4
-
x
2
5
=
1
【答案】
y
2
4
-
x
2
5
=
1
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/23 20:38:36組卷:155引用:9難度:0.5
相似題
-
1.若雙曲線
-x28=1的漸近線方程為y=±2x,則實數(shù)m等于( ?。?/h2>y2m發(fā)布:2025/1/5 18:30:5組卷:26引用:1難度:0.9 -
2.已知F1,F(xiàn)2為橢圓和雙曲線的公共焦點,P是它們的公共點,且∠F1PF2=
,e1,e2分別為橢圓和雙曲線的離心率,則π3的值為( ?。?/h2>4e1e23e12+e22發(fā)布:2025/1/2 23:30:3組卷:199引用:2難度:0.5 -
3.已知雙曲線
的右焦點為F(2,0),漸近線方程為x2a2-y2b2=1(a>0,b>0),則該雙曲線實軸長為( )3x±y=0發(fā)布:2025/1/2 19:0:5組卷:135引用:2難度:0.7
把好題分享給你的好友吧~~