勾股定理是人類(lèi)最偉大的十個(gè)科學(xué)發(fā)現(xiàn)之一,西方國(guó)家稱(chēng)之為畢達(dá)哥拉斯定理.在我國(guó)古書(shū)《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載,我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”(如圖1),后人稱(chēng)之為“趙爽弦圖”,流傳至今.
(1)①如圖2,3,4,以直角三角形的三邊為邊或直徑,分別向外部作正方形、半圓、等邊三角形,面積分別為S1,S2,S3,利用勾股定理,判斷這3個(gè)圖形中面積關(guān)系滿(mǎn)足S1+S2=S3的有 33個(gè).
②如圖5,分別以直角三角形三邊為直徑作半圓,設(shè)圖中兩個(gè)月牙形圖案(圖中陰影部分)的面積分別為S1,S2,直角三角形面積為S3,也滿(mǎn)足S1+S2=S3嗎?若滿(mǎn)足,請(qǐng)證明;若不滿(mǎn)足,請(qǐng)求出S1,S2,S3的數(shù)量關(guān)系.
(2)如果以正方形一邊為斜邊向外作直角三角形,再以該直角三角形的兩直角邊分別向外作正方形,重復(fù)這一過(guò)程就可以得到如圖6所示的“勾股樹(shù)”.在如圖7所示的“勾股樹(shù)”的某部分圖形中,設(shè)大正方形M的邊長(zhǎng)為定值m,四個(gè)小正方形A,B,C,D的邊長(zhǎng)分別為a,b,c,d,則a2+b2+c2+d2=m2m2.
【考點(diǎn)】勾股定理的證明.
【答案】3;m2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:621引用:4難度:0.6
相似題
-
1.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲.如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b.若ab=8,大正方形的面積為25,則EF的長(zhǎng)為( )
A.9 B.9 2C.3 2D.3 發(fā)布:2024/12/9 18:0:2組卷:527引用:5難度:0.6 -
2.用四個(gè)全等的直角三角形鑲嵌而成的正方形如圖所示,已知大正方形的面積為49,小正方形的面積為4,若x,y表示直角三角形的兩直角邊長(zhǎng)(x>y),給出下列四個(gè)結(jié)論正確的是 .(填序號(hào)即可)
①x-y=2;
②x2+y2=49;
③2xy=45;
④x+y=9.發(fā)布:2024/12/23 12:0:2組卷:446引用:3難度:0.6 -
3.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國(guó)古代數(shù)學(xué)的驕傲如圖所示的“趙爽弦圖”是由四個(gè)全等的直角三角形和一個(gè)小正方形拼成的一個(gè)大正方形.設(shè)直角三角形較長(zhǎng)直角邊長(zhǎng)為a,較短直角邊長(zhǎng)為b,若ab=8,大正方形的面積為25,則小正方形的邊長(zhǎng)為( )
A.9 B.6 C.4 D.3 發(fā)布:2024/12/19 23:30:5組卷:1754引用:28難度:0.6
把好題分享給你的好友吧~~