如圖,拋物線y=-12x2+bx+c與x軸交于A(-2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,直線y=12x+1交于點(diǎn)A,D,直線AD與BC交于點(diǎn)E.
(1)求拋物線的解析式;
(2)若M(m,0)是線段AB上的動點(diǎn),過點(diǎn)M作x軸的垂線,交拋物線于點(diǎn)F,交直線AD點(diǎn)G,交直線BC于點(diǎn)H.
①拋物線的對稱軸與x軸交于點(diǎn)Q,在y軸上是否存在點(diǎn)N,使四邊形DNQB的周長最小,若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由;
②當(dāng)點(diǎn)F在直線AD上方的拋物線上時,S△EFG=12S△OEG時,求m的值.
1
2
1
2
1
2
【考點(diǎn)】二次函數(shù)綜合題.
【答案】(1)y=-x2+x+4;
(2)①存在,點(diǎn)N(0,);②m=.
1
2
(2)①存在,點(diǎn)N(0,
5
8
1
±
21
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/2 10:0:2組卷:62引用:1難度:0.4
相似題
-
1.如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+
x+c與x軸交于點(diǎn)A(-3,0),與y軸交于點(diǎn)C(0,-2).43
(1)求拋物線的解析式;
(2)如圖1,連接AC,點(diǎn)D為線段AC下方拋物線上一動點(diǎn),過點(diǎn)D作DE∥y軸交線段AC于E點(diǎn),連接EO,記△ADC的面積為S1,△AEO的面積為S2,求S1-S2的最大值及此時點(diǎn)D的坐標(biāo);
(3)如圖2,在(2)問的條件下,將拋物線沿射線CB方向平移個單位長度得到新拋物線,動點(diǎn)M在原拋物線的對稱軸上,點(diǎn)N為新拋物線上一點(diǎn),直接寫出所有使得以點(diǎn)A、D、M、N為頂點(diǎn)的四邊形是平行四邊形的點(diǎn)N的坐標(biāo),并把求其中一個點(diǎn)N的坐標(biāo)的過程寫出來.352發(fā)布:2025/6/4 0:0:8組卷:299引用:2難度:0.4 -
2.已知二次函數(shù)y=ax2-2ax-3a(a>0)交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),交y軸于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于拋物線的對稱軸對稱,過點(diǎn)A的直線交拋物線于點(diǎn)E.
(1)若S△ABC=6,求a的值.
(2)若AB平分∠DAE,
①求的值;ADAE
②求證:不論a取何值,總有∠AED<45°.發(fā)布:2025/6/3 20:30:2組卷:72引用:1難度:0.3 -
3.如圖,在平面直角坐標(biāo)系中,直線y=-x+3與拋物線y=-x2+bx+c交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B在y軸上.點(diǎn)P是拋物線上任意一點(diǎn),過點(diǎn)P作PQ⊥y軸,交直線AB于點(diǎn)Q,連接BP,設(shè)點(diǎn)P的橫坐標(biāo)為m,△PQB的邊PQ與PQ邊上的高之差為d.
(1)求此拋物線解析式.
(2)求點(diǎn)Q的橫坐標(biāo)(用含m的代數(shù)式表示);
(3)∠BQP為銳角.
①求d關(guān)于m的函數(shù)關(guān)系式;
②當(dāng)△AOB的頂點(diǎn)到PQ的最短距離等于d時,直接寫出m的值.發(fā)布:2025/6/3 21:0:1組卷:205引用:3難度:0.1