已知線段AB的端點(diǎn)B的坐標(biāo)為(1,3),端點(diǎn)A在圓C:(x+1)2+y2=4上運(yùn)動(dòng).
(1)求線段AB的中點(diǎn)M的軌跡方程;
(2)過點(diǎn)B的直線l與圓C有兩個(gè)交點(diǎn)E、D,當(dāng)CE⊥CD時(shí)求直線l的斜率.
【考點(diǎn)】軌跡方程.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/10 6:0:2組卷:73引用:3難度:0.6
相似題
-
1.已知A是圓x2+(y-1)2=1上的動(dòng)點(diǎn),PA是圓的切線,|PA|=1,則點(diǎn)P的軌跡方程是( ?。?/h2>
A.x2+(y-1)2=2 B.x2+(y-1)2=4 C.(x-1)2+y2=2 D.(x-1)2+y2=4 發(fā)布:2024/10/24 15:0:1組卷:71引用:3難度:0.7 -
2.古希臘著名數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值λ(λ≠1)的點(diǎn)的軌跡是圓,此圓被稱為“阿波羅尼斯圓”.在平面直角坐標(biāo)系xOy中,已知A(-4,2),B(2,2),點(diǎn)P滿足
,設(shè)點(diǎn)P的軌跡為圓C,下列結(jié)論正確的是( )|PA||PB|=2A.圓C的方程是(x-4)2+(y-2)2=16 B.過點(diǎn)A向圓C引切線,兩條切線的夾角為 π3C.過點(diǎn)A作直線l,若圓C上恰有三個(gè)點(diǎn)到直線l距離為2,該直線斜率為 ±155D.在直線y=2上存在異于A,B的兩點(diǎn)D,E,使得 |PD||PE|=2發(fā)布:2024/11/4 6:30:2組卷:298引用:18難度:0.5 -
3.設(shè)圓x2+y2-2x-15=0的圓心為M,直線l過點(diǎn)N(-1,0)且與x軸不重合,l交圓M于A,B兩點(diǎn),過點(diǎn)N作AM的平行線交BM于點(diǎn)C.
(1)證明|CM|+|CN|為定值,并寫出點(diǎn)C的軌跡方程;
(2)設(shè)點(diǎn)C的軌跡為曲線E,直線l1:y=kx與曲線E交于P,Q兩點(diǎn),點(diǎn)R為橢圓C上一點(diǎn),若△PQR是以PQ為底邊的等腰三角形,求△PQR面積的最小值.發(fā)布:2024/10/25 5:0:2組卷:137引用:2難度:0.6
把好題分享給你的好友吧~~