設(shè)向量m=(alnx,12),n=(1,x2),f(x)=m?n-(a+1)x,(a∈R).
(1)當(dāng)a=-3時,求f(x)的極值;
(2)當(dāng)a>0時,求函數(shù)f(x)零點(diǎn)的個數(shù).
m
=
(
alnx
,
1
2
)
n
=
(
1
,
x
2
)
f
(
x
)
=
m
?
n
-
(
a
+
1
)
x
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:75引用:5難度:0.5
相似題
-
1.已知函數(shù)f(x)=(x-a)lnx(a∈R),它的導(dǎo)函數(shù)為f'(x).
(1)當(dāng)a=1時,求f'(x)的零點(diǎn);
(2)若函數(shù)f(x)存在極小值點(diǎn),求a的取值范圍.發(fā)布:2024/12/29 13:0:1組卷:279引用:8難度:0.4 -
2.若函數(shù)
有兩個極值點(diǎn),則實(shí)數(shù)a的取值范圍為( )f(x)=e2x4-axex發(fā)布:2024/12/29 13:30:1組卷:110引用:3難度:0.5 -
3.定義:設(shè)f'(x)是f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)f'(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點(diǎn)”且“拐點(diǎn)”就是三次函數(shù)圖像的對稱中心,已知函數(shù)
的對稱中心為(1,1),則下列說法中正確的有( ?。?/h2>f(x)=ax3+bx2+5(ab≠0)發(fā)布:2024/12/29 13:30:1組卷:152引用:6難度:0.5
把好題分享給你的好友吧~~