試卷征集
加入會員
操作視頻

閱讀下列材料:教科書中這樣寫道:“我們把多項式a2+2ab+b2及a2-2ab+b2叫做完全平方式”,如果一個多項式不是完全平方式,我們常做如下變形:先添加一個適當?shù)捻棧故阶又谐霈F(xiàn)完全平方式,再減去這個項,使整個式子的值不變,這種方法叫做配方法.即將多項式x2+bx+c(b、c為常數(shù))寫成(x+h)2+k(h、k為常數(shù))的形式,配方法是一種重要的解決數(shù)學問題的方法,不僅可以將有些看似不能分解的多項式分解因式,還能解決一些與非負數(shù)有關的問題及求代數(shù)式最大、最小值等問題.
【知識理解】
(1)若多項式x2+kx+16是一個完全平方式,那么常數(shù)k的值為
±8
±8

(2)配方:x2-6x-10=(x-3)2-
19
19
;
【知識運用】
(3)已知m2+2mn+2n2-8n+16=0,則m=
-4
-4
,n=
4
4
;
(4)求多項式:x2+y2-4x+6y+15的最小值.

【考點】因式分解的應用
【答案】±8;19;-4;4
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:819引用:5難度:0.5
相似題
  • 1.我們常利用數(shù)形結合思想探索了整式乘法的一些法則和公式.類似地,我們可以借助一個棱長為a的大正方體進行以下探索:
    菁優(yōu)網(wǎng)
    (1)在大正方體一角截去一個棱長為b(b<a)的小正方體,如圖1所示,則得到的幾何體的體積為

    (2)將圖1中的幾何體分割成三個長方體①、②、③,如圖2所示,因為BC=a,AB=a-b,CF=b,所以長方體①的體積為ab(a-b),類似地,長方體②的體積為
    ,長方體③的體積為
    ;(結果不需要化簡)
    (3)將表示長方體①、②、③的體積的式子相加,并將得到的多項式分解因式,結果為

    (4)用不同的方法表示圖1中幾何體的體積,可以得到的等式為

    (5)已知a-b=4,ab=2,求a3-b3的值.

    發(fā)布:2024/12/23 14:0:1組卷:281引用:5難度:0.4
  • 2.閱讀下列題目的解題過程:
    已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
    解:∵a2c2-b2c2=a4-b4(A)
    ∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
    ∴c2=a2+b2(C)
    ∴△ABC是直角三角形
    問:(1)上述解題過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:

    (2)錯誤的原因為:
    ;
    (3)本題正確的結論為:

    發(fā)布:2024/12/23 18:0:1組卷:2497引用:25難度:0.6
  • 3.若a是整數(shù),則a2+a一定能被下列哪個數(shù)整除( ?。?/h2>

    發(fā)布:2024/12/24 6:30:3組卷:384引用:7難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正