定義:由兩條與x軸有著相同的交點,并且開口方向相同的拋物線所圍成的封閉曲線稱為“月牙線”,如圖①,拋物線C1:y=x2+2x-3與拋物線C2:y=ax2+2ax+c組成一個開口向上的“月牙線”,拋物線C1和拋物線C2與x軸有著相同的交點A(-3,0)、B(點B在點A右側(cè)),與y軸的交點分別為G、H(0,-1).
(1)求拋物線C2的解析式和點G的坐標.
(2)點M是x軸下方拋物線C1上的點,過點M作MN⊥x軸于點N,交拋物線C2于點D,求線段MN與線段DM的長度的比值.
(3)如圖②,點E是點H關(guān)于拋物線對稱軸的對稱點,連接EG,在x軸上是否存在點F,使得△EFG是以EG為腰的等腰三角形?若存在,請求出點F的坐標;若不存在,請說明理由.

【考點】二次函數(shù)綜合題.
【答案】(1)y=x2+x-1,G(0,-3);
(2);
(3)存在,(-2,0)或(--2,0).
1
3
2
3
(2)
3
2
(3)存在,(
7
7
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/26 0:0:1組卷:1559引用:7難度:0.3
相似題
-
1.如圖1,在平面直角坐標系中,拋物線y=ax2+bx+
(a≠0)與x軸交于點A(3,0),點B(-1,0),與y軸交于點C.3
(1)求該拋物線的解析式;
(2)點P為直線AC上方拋物線上的一點,過點P作PD∥y軸,交AC于點D,點E是直線AC上一點(點E位于DP左側(cè)),且ED=PD,連接PE,求△DPE周長的最大值以及此時點P的坐標;
(3)如圖2,將拋物線向左平移,使得平移后的拋物線的對稱軸為y軸,點M在直線AC上,將直線AC繞點M順時針旋轉(zhuǎn)30°得到直線l,直線l與平移后拋物線的交點N位于直線AC上方,Q為平面直角坐標系內(nèi)一點,直接寫出所有使得以點C,M,N,Q為頂點的四邊形是菱形的點N的坐標,并把求其中一個點N的坐標的過程寫出來.發(fā)布:2025/6/8 20:0:1組卷:486引用:2難度:0.2 -
2.已知函數(shù)y=
,記該函數(shù)圖象為G.-12x2+12x+m(x<m)x2-mx+m(x≥m)
(1)當(dāng)m=2時,
①已知M(4,n)在該函數(shù)圖象上,求n的值;
②當(dāng)0≤x≤2時,求函數(shù)G的最大值.
(2)當(dāng)m>0時,作直線x=m與x軸交于點P,與函數(shù)G交于點Q,若∠POQ=45°時,求m的值;12
(3)當(dāng)m≤3時,設(shè)圖象與x軸交于點A,與y軸交于點B,過點B作BC⊥BA交直線x=m于點C,設(shè)點A的橫坐標為a,C點的縱坐標為c,若a=-3c,求m的值.發(fā)布:2025/6/8 14:30:2組卷:3081引用:7難度:0.1 -
3.我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖所示,點A、B、C、D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,-3),AB為半圓的直徑,半圓圓心M的坐標為(1,0),半圓半徑為2.
(1)請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經(jīng)過點C的“蛋圓”切線的解析式嗎?試試看;
(3)開動腦筋想一想,相信你能求出經(jīng)過點D的“蛋圓”切線的解析式.發(fā)布:2025/6/8 14:30:2組卷:237引用:45難度:0.1