綜合與實踐課上,老師讓同學們以“矩形的折疊”為主題開展教學探究活動.在矩形ABCD中,已知AB=6,BC=8,點P是邊AD上的一個動點.
【操作判斷】
(1)如圖1,甲同學先將矩形ABCD對折,使得AD與BC重合,展開得到折痕EF.將矩形ABCD沿BP折疊,使A恰好落在EF上的M處,則線段AM與線段PB的位置關系為 AM⊥PBAM⊥PB;∠MBC的度數(shù)為 30°30°;
【遷移探究】
(2)如圖2,乙同學將矩形ABCD沿BP折疊,使A恰好落在矩形ABCD的對角線上,求此時AP的長;
【綜合應用】
(3)如圖3,點Q在邊AB上運動,且始終滿足PQ∥BD,以PQ為折疊,將△APQ翻折,求折疊后△APQ與△ABD重疊部分面積的最大值,并求出此時AP的長.

【考點】四邊形綜合題.
【答案】AM⊥PB;30°
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2025/5/23 0:30:1組卷:651引用:6難度:0.1
相似題
-
1.如圖,正方形ABCD的四個頂點分別在正方形EFGH的四條邊上,我們稱正方形EFGH是正方形ABCD的外接正方形.
探究一:已知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍?如圖,假設存在正方形EFGH,它的面積是正方形ABCD的2倍.
因為正方形ABCD的面積為1,則正方形EFGH的面積為2,
所以EF=FG=GH=HE=,設EB=x,則BF=2-x,2
∵Rt△AEB≌Rt△BFC
∴BF=AE=-x2
在Rt△AEB中,由勾股定理,得
x2+(-x)2=122
解得,x1=x2=22
∴BE=BF,即點B是EF的中點.
同理,點C,D,A分別是FG,GH,HE的中點.
所以,存在一個外接正方形EFGH,它的面積是正方形ABCD面積的2倍
探究二:已知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的3倍?(仿照上述方法,完成探究過程)
探究三:已知邊長為1的正方形ABCD,一個外接正方形EFGH,它的面積是正方形ABCD面積的4倍?(填“存在”或“不存在”)
探究四:已知邊長為1的正方形ABCD,是否存在一個外接正方形EFGH,它的面積是正方形ABCD面積的n倍?(n>2)(仿照上述方法,完成探究過程)發(fā)布:2025/6/14 10:0:1組卷:408引用:10難度:0.1 -
2.如圖,矩形ABCD中,AB=4cm,BC=2cm,動點P從點A出發(fā),以2cm/s的速度沿AB向終點B勻速運動;同時動點Q從點B出發(fā),以3cm/s的速度沿BC-CD向終點D勻速運動,連接PQ.設點P的運動時間為t(s),△BPQ的面積為S(cm2).
(1)當PQ∥BC時,求t的值;
(2)求S與t之間的函數(shù)關系式,并寫出自變量t的取值范圍;
(3)當△BPQ的面積是矩形ABCD面積的時,直接寫出t的值.14發(fā)布:2025/6/14 10:0:1組卷:85引用:7難度:0.2 -
3.在平面直角坐標系xOy中,過原點O及點A(0,2)、C(6,0)作矩形OABC,∠AOC的平分線交AB于點D.點P從點O出發(fā),以每秒
個單位長度的速度沿射線OD方向移動;同時點Q從點O出發(fā),以每秒2個單位長度的速度沿x軸正方向移動.設移動時間為t秒.2
(1)填空,OP=,OQ=(用含t的代數(shù)式表示);
(2)設△OPQ的面積為S1,△BQC的面積為S2,當t為何值時,S1+S2的值為30.
(3)求當t為何值時,△PQB為直角三角形.發(fā)布:2025/6/14 10:0:1組卷:106引用:4難度:0.1