(1)觀察發(fā)現(xiàn):如圖1,已知Rt△ABC,∠ABC=90°,分別以AB,BC為邊,向外作正方形ABDE和正方形BCFG,連接DG.若M是DG的中點(diǎn),不難發(fā)現(xiàn):BM=12AC.
請(qǐng)完善下面證明思路:①先根據(jù) 直角三角形斜邊上的中線等于斜邊的一半直角三角形斜邊上的中線等于斜邊的一半,證明BM=12DG;②再證明 △BDG≌△BAC△BDG≌△BAC,得到DG=AC;所以BM=12AC;
(2)數(shù)學(xué)思考:若將上題的條件改為:“已知Rt△ABC,∠ABC=90°,分別以AB,AC為邊向外作正方形ABDE和正方形ACHI,N是EI的中點(diǎn)”,則相應(yīng)的結(jié)論“AN=12BC”成立嗎?
小穎通過添加如圖2所示的輔助線驗(yàn)證了結(jié)論的正確性.請(qǐng)寫出小穎所添加的輔助線的作法,并由此證明該結(jié)論;
(3)拓展延伸:如圖3,已知等腰△ABC和等腰△ADE,AB=AC,AD=AE.連接BE,CD,若P是CD的中點(diǎn),探索:當(dāng)∠BAC與∠DAE滿足什么條件時(shí),AP=12BE,并簡要說明證明思路.

1
2
1
2
1
2
1
2
1
2
【考點(diǎn)】四邊形綜合題.
【答案】直角三角形斜邊上的中線等于斜邊的一半;△BDG≌△BAC
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/30 8:0:9組卷:228引用:2難度:0.3
相似題
-
1.如圖,∠MON=90°,四邊形ABCD是正方形,且點(diǎn)A、D始終分別在射線OM和ON上.
(1)如圖1,若AB=4,點(diǎn)A、D在OM,ON上滑動(dòng)過程中,OB何時(shí)取最大值,并求出此最大值.
(2)如圖2,點(diǎn)P在AB上,且∠PDA=∠ODA,DP交AC于點(diǎn)F,延長射線BF交AD,ON分別于點(diǎn)G、Q.
①求證:BQ⊥ON.
②若OD=,求△DFQ的周長.6發(fā)布:2025/6/9 5:0:1組卷:50引用:2難度:0.1 -
2.下面是小明復(fù)習(xí)全等三角形時(shí)遇到的一個(gè)問題并引發(fā)的思考,請(qǐng)幫助小明完成以下學(xué)習(xí)任務(wù).
如圖,OC平分∠AOB,點(diǎn)P在OC上,M、N分別是OA、OB上的點(diǎn),OM=ON,求證:PM=PN.
小明的思考:要證明PM=PN,只需證明△POM≌△PON即可.
證法:如圖1,∵OC平分∠AOB,∴∠AOC=∠BOC,
又∵OP=OP,OM=ON,∴△MOP≌△NOP,
∴PM=PN;
請(qǐng)仔細(xì)閱讀并完成以下任務(wù):
(1)小明得出△MOP≌△NOP的依據(jù)是 (填序號(hào)).
①SSS,②SAS,③AAS,④ASA,⑤HL.
(2)如圖②,在四邊形ABCD中,AB=AD+BC,∠DAB的平分線和∠ABC的平分線交于CD邊上點(diǎn)P,求證:PC=PD.
(3)在(2)的條件下,如圖③,若AB=10,tan∠PAB=,當(dāng)△PBC有一個(gè)內(nèi)角是45°時(shí),△PAD的面積是 .12發(fā)布:2025/6/9 3:30:1組卷:114引用:3難度:0.3 -
3.菱形ABCD中,AB=4,∠B=60°,E,F(xiàn)分別是AB,AD上的動(dòng)點(diǎn),且BE=AF,連接EF,交AC于G,則下列結(jié)論:①△BEC≌△AFC;②△ECF為等邊三角形;③CE的最小值為2
.其中正確的結(jié)論是( ?。?/h2>3發(fā)布:2025/6/9 5:30:2組卷:355引用:7難度:0.4