甲、乙、丙、丁四人進(jìn)行網(wǎng)球比賽,規(guī)定首先甲與乙比、丙與丁比,這兩場(chǎng)比賽的勝利者再爭(zhēng)奪冠軍,他們之間相互獲勝的概率如表所示,則乙獲得冠軍的概率為( ?。?br />
甲 | 乙 | 丙 | 丁 | |
甲獲勝概率 | - | 0.3 | 0.3 | 0.8 |
乙獲勝概率 | 0.7 | - | 0.6 | 0.3 |
丙獲勝概率 | 0.7 | 0.4 | - | 0.5 |
丁獲勝概率 | 0.2 | 0.7 | 0.5 | - |
【考點(diǎn)】相互獨(dú)立事件和相互獨(dú)立事件的概率乘法公式;互斥事件的概率加法公式.
【答案】D
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/20 8:0:9組卷:91引用:2難度:0.5
相似題
-
1.小王同學(xué)進(jìn)行投籃練習(xí),若他第1球投進(jìn),則第2球投進(jìn)的概率為
;若他第1球投不進(jìn),則第2球投進(jìn)的概率為23.若他第1球投進(jìn)概率為13,他第2球投進(jìn)的概率為( ?。?/h2>23發(fā)布:2024/12/29 12:0:2組卷:293引用:5難度:0.7 -
2.甲、乙兩人進(jìn)行圍棋比賽,共比賽2n(n∈N*)局,且每局甲獲勝的概率和乙獲勝的概率均為
.如果某人獲勝的局?jǐn)?shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n),則( ?。?/h2>12發(fā)布:2024/12/29 12:0:2組卷:246引用:6難度:0.6 -
3.某市在市民中發(fā)起了無(wú)償獻(xiàn)血活動(dòng),假設(shè)每個(gè)獻(xiàn)血者到達(dá)采血站是隨機(jī)的,并且每個(gè)獻(xiàn)血者到達(dá)采血站和其他的獻(xiàn)血者到達(dá)采血站是相互獨(dú)立的.在所有人中,通常45%的人的血型是O型,如果一天內(nèi)有10位獻(xiàn)血者到達(dá)采血站獻(xiàn)血,用隨機(jī)模擬的方法來(lái)估計(jì)一下,這10位獻(xiàn)血者中至少有4位的血型是O型的概率.
發(fā)布:2024/12/29 11:0:2組卷:1引用:1難度:0.7