我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.
(1)如圖1,已知格點(diǎn)(小正方形的頂點(diǎn)):O(0,0)、A(3,0)、B(0,4),若M為格點(diǎn),請(qǐng)直接畫(huà)出所有以O(shè)A、OB為勾股邊且對(duì)角線相等的勾股四邊形OAMB;
(2)如圖2,將△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△DBE,連接AD、DC,∠DCB=30°,求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形;
(3)如圖3,在四邊形ABCD中,△BCD為等邊三角形,AB=6,AD=8,∠DAB=30°,求AC長(zhǎng).

【考點(diǎn)】四邊形綜合題.
【答案】(1)畫(huà)出圖形見(jiàn)解答;
(2)證明過(guò)程見(jiàn)解答;
(3)AC=10.
(2)證明過(guò)程見(jiàn)解答;
(3)AC=10.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1692引用:3難度:0.3
相似題
-
1.如圖1和圖2,在四邊形ABCD中,AB=CD=6,AD=2,BC=8,∠B=∠C=60°,點(diǎn)K在CD邊上,點(diǎn)M,N分別在AB,BC邊上,且AM=CN=2,點(diǎn)P從點(diǎn)M出發(fā)沿折線MB-BN勻速運(yùn)動(dòng),點(diǎn)E在CD邊所在直線上隨P移動(dòng),且始終保持∠MPE=∠B;點(diǎn)Q從點(diǎn)D出發(fā)沿DC勻速運(yùn)動(dòng),點(diǎn)P,Q同時(shí)出發(fā),點(diǎn)Q的速度是點(diǎn)P的一半,點(diǎn)P到達(dá)點(diǎn)N停止,點(diǎn)Q隨之停止.設(shè)點(diǎn)P移動(dòng)的路程為x.
(1)當(dāng)x=5時(shí),求PN的長(zhǎng);
(2)當(dāng)MP⊥BC時(shí),求x的值;
(3)用含x的式子表示QE的長(zhǎng);
(4)已知點(diǎn)P從點(diǎn)M到點(diǎn)B再到點(diǎn)N共用時(shí)20秒,若,請(qǐng)直接寫(xiě)出點(diǎn)K在線段QE上(包括端點(diǎn))的總時(shí)長(zhǎng).CK=154發(fā)布:2025/5/22 10:30:1組卷:224引用:2難度:0.1 -
2.定義:我們把對(duì)角線相等的凸四邊形叫做“等角線四邊形”.
(1)在已經(jīng)學(xué)過(guò)的“①平行四邊形;②矩形;③菱形;④正方形“中,一定是“等角線四邊形”的是 (填序號(hào));
(2)如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊BC,CD上,且EC=DF,連接EF,AF,求證:四邊形ABEF是等角線四邊形;
(3)如圖2,△ABC中,∠ABC=90°,AB=4,BC=3,D為線段AB的垂直平分線上一點(diǎn),若以點(diǎn)A,B,C,D為頂點(diǎn)的四邊形是等角線四邊形,求這個(gè)等角線四邊形的面積.發(fā)布:2025/5/22 9:0:1組卷:478引用:1難度:0.3 -
3.在數(shù)學(xué)興趣小組活動(dòng)中,同學(xué)們對(duì)矩形的折疊問(wèn)題進(jìn)行了探究.在矩形ABCD中,AB=6,AD=3,E是AB邊上一點(diǎn),AE=2,F(xiàn)是直線CD上一動(dòng)點(diǎn),以直線EF為對(duì)稱軸,點(diǎn)A關(guān)于直線EF的對(duì)稱點(diǎn)為A'.
(1)如圖(1),求四邊形AEA'F的面積.
(2)如圖(2),連接CE,當(dāng)點(diǎn)A'落在直線CE上時(shí),求tan∠CFA'的值.
(3)當(dāng)點(diǎn)F,A',B三點(diǎn)在一條直線上時(shí),則DF的長(zhǎng)度為 .發(fā)布:2025/5/22 9:0:1組卷:225引用:1難度:0.1