已知F1,F(xiàn)2分別為橢圓C:x24+y23=1的左、右焦點(diǎn),MN為該橢圓的一條垂直于x軸的動(dòng)弦,直線m:x=4與x軸交于點(diǎn)A,直線MF2與直線AN的交點(diǎn)為B.
(1)證明:點(diǎn)B恒在橢圓C上.
(2)設(shè)直線n與橢圓C只有一個(gè)公共點(diǎn)P,直線n與直線m相交于點(diǎn)Q,在平面內(nèi)是否存在定點(diǎn)T,使得∠PTQ=π2恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.
C
:
x
2
4
+
y
2
3
=
1
∠
PTQ
=
π
2
【考點(diǎn)】直線與橢圓的綜合;橢圓的標(biāo)準(zhǔn)方程.
【答案】(1)證明:由題意知F2(1,0),A(4,0),設(shè)M(s,t),N(s,-t),則=1,t2=3(1-).
直線MF2 的方程為y=(x-1),直線AN 的方程為y=(x-4),
聯(lián)立可得xB=,yB=,即B 的坐標(biāo)為(,).
因?yàn)?div dealflag="1" class="MathJye" mathtag="math">
+s
2
4
+
t
2
3
s
2
4
直線MF2 的方程為y=
t
s
-
1
-
t
s
-
4
聯(lián)立可得xB=
5
s
-
8
2
s
-
5
3
t
2
s
-
5
5
s
-
8
2
s
-
5
3
t
2
s
-
5
因?yàn)?div dealflag="1" class="MathJye" mathtag="math">
x
B
2
4
y
B
2
3
(
5
s
-
8
)
2
+
12
t
2
4
(
2
s
-
5
)
2
(
5
s
-
8
)
2
+
36
-
9
s
2
4
(
2
s
-
5
)
2
16
s
2
-
80
s
+
100
16
s
2
-
80
s
+
100
所以B 點(diǎn)恒在橢圓C上.
(2)存在,T(1,0).
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:127引用:7難度:0.4
相似題
-
1.設(shè)橢圓
+x2a2=1(a>b>0)的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為y2b2,|AB|=53.13
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l:y=kx(k<0)與橢圓交于P,Q兩點(diǎn),直線l與直線AB交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若△BPM的面積是△BPQ面積的2倍,求k的值.發(fā)布:2024/12/29 12:30:1組卷:4564引用:26難度:0.3 -
2.已知橢圓C:
=1(a>b>0)的一個(gè)頂點(diǎn)坐標(biāo)為A(0,-1),離心率為x2a2+y2b2.32
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=k(x-1)(k≠0)與橢圓C交于不同的兩點(diǎn)P,Q,線段PQ的中點(diǎn)為M,點(diǎn)B(1,0),求證:點(diǎn)M不在以AB為直徑的圓上.發(fā)布:2024/12/29 12:30:1組卷:371引用:4難度:0.5 -
3.如果橢圓
的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是( )x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:460引用:3難度:0.6