已知直線方程為(2-m)x+(2m+1)y+3m+4=0.
(1)證明:直線恒過定點M,并求出M的坐標(biāo);
(2)m為何值時,點T(3,4)到直線的距離最大,最大值為多少?
(3)設(shè)P,Q為圓x2+y2=25上的動點,若PM⊥QM,求PQ中點R的軌跡方程.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/17 13:0:1組卷:20引用:2難度:0.5
相似題
-
1.點P為△ABC所在平面內(nèi)的動點,滿足
=t(AP),t∈(0,+∞),則點P的軌跡通過△ABC的( ?。?/h2>AB|AB|cosB+AC|AC|cosC發(fā)布:2024/12/29 6:30:1組卷:100引用:3難度:0.7 -
2.已知兩個定點A(-2,0),B(1,0),如果動點P滿足|PA|=2|PB|.
(1)求點P的軌跡方程并說明該軌跡是什么圖形;
(2)若直線l:y=kx+1分別與點P的軌跡和圓(x+2)2+(y-4)2=4都有公共點,求實數(shù)k的取值范圍.發(fā)布:2024/12/29 10:30:1組卷:42引用:3難度:0.5 -
3.已知四棱錐P-ABCD的底面ABCD為正方形,PD⊥底面ABCD,且PD=AD=4,點E為BC的中點.四棱錐P-ABCD的所有頂點都在同一個球面上,點M是該球面上的一動點,且PM⊥AE,則點M的軌跡的長度為( ?。?/h2>
發(fā)布:2024/12/29 8:0:12組卷:14引用:1難度:0.6