如圖,在平面直角坐標系中,點A是第一象限內(nèi)一點,點B在x軸的正半軸上,△OAB的三邊分別為a、b、c,且a、b、c同時滿足ba+ab=2,且b2+c2-a22bc=12.
(1)請你判斷△OAB的形狀,并證明你的結(jié)論;
(2)動點P從點O出發(fā),以每秒一個單位長度的速度向x軸的正半軸運動,點P的運動時間是t,連接AP,△ABP的面積是S,若△OAB的面積是34a2,試用含a和t的代數(shù)式表示S(不需要寫出t的取值范圍);
(3)在(2)的條件下,當點P運動到點B右側(cè)時,在AP上取一點M,使得AM=BP,在BP上取一點N,使得12∠OAP=∠NMP+30°,若MP=53,NP=23,求點A坐標.
b
a
+
a
b
b
2
+
c
2
-
a
2
2
bc
1
2
3
4
1
2
3
3
【考點】三角形綜合題.
【答案】(1)△OAB是等邊三角形,證明過程詳見解答;
(2)當a≤t時,S=a2-at,
當a<t時,S=-a2+at;
(3)A(,).
(2)當a≤t時,S=
3
4
3
4
當a<t時,S=-
3
4
3
4
(3)A(
7
3
4
21
8
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/19 21:0:2組卷:9引用:1難度:0.1
相似題
-
1.如圖,在△ABC中,AB=AC,∠BAC=80°,點D為△ABC內(nèi)一點,∠ABD=∠ACD=20°,E為BD延長線上的一點,且AB=AE.
(1)求∠BAD的度數(shù);
(2)求證:DE平分∠ADC;
(3)請判斷AD,BD,DE之間的數(shù)量關(guān)系,并說明理由.發(fā)布:2025/6/21 1:30:2組卷:1216引用:5難度:0.4 -
2.如圖,在△ABC中,∠ACB=90°,AC=3,BC=6.動點P從點A出發(fā),沿AB以每秒
個單位長度的速度向終點B勻速運動,同時點Q從點B出發(fā),沿折線BC-CA以每秒3個單位長度的速度向終點A勻速運動.當點P不與點A、B重合時,連結(jié)PQ,以PQ為斜邊作Rt△PMQ,使∠PMQ=90°,tan∠MPQ=5,且點M、B在直線PQ的兩側(cè).設(shè)點Q的運動時間為t秒.43
(1)用含t的代數(shù)式表示CQ的長.
(2)當PM⊥AB時,求PQ的長.
(3)當點M在△ABC內(nèi)部時,求t的取值范圍.
(4)當△ABC的邊與△PMO的邊所夾的角被線段PQ平分時,直接寫出t的值.發(fā)布:2025/6/20 10:30:1組卷:82引用:1難度:0.1 -
3.如圖1,在△ABC中,BO⊥AC于點O,AO=BO=3,OC=1,過點A作AH⊥BC于點H,交BO于點P.
(1)求線段OP的長度;
(2)連接OH,求證:∠OHP=45°;
(3)如圖2,若點D為AB的中點,點M為線段BO延長線上一動點,連接MD,過點D作DN⊥DM交線段OA延長線于N點,則S△BDM-S△ADN的值是否發(fā)生改變,如改變,求出該值的變化范圍;若不改變,求該式子的值.發(fā)布:2025/6/20 14:30:1組卷:3194引用:5難度:0.3