如圖,等腰三角形ABC中,AB=AC,D為AC邊上一點(diǎn),E為射線BD上一點(diǎn),連CE.

(1)如圖1,點(diǎn)F在線段BD上,連AE、AF.若∠BAC=60°,△AEF為等邊三角形,AE=3,CE=2,求BE的長;
(2)如圖2,F(xiàn)為線段CE的垂直平分線上一點(diǎn),連接FC、FE、AF,M為BE的中點(diǎn),連接AM、FM.若∠ABC+∠FEC=90°,求證:AM⊥MF;
(3)如圖3,∠BAC=60°,D為AC中點(diǎn),F(xiàn)為CE中點(diǎn),AF與BE交于點(diǎn)G,將△ABG沿射線BD方向平移得△A′B′G′,連接AB′、A′C.若AB=4,直接寫出AB′+A′C的最小值.
【考點(diǎn)】幾何變換綜合題.
【答案】(1)5;
(2)證明過程詳見解答;
(3)4.
(2)證明過程詳見解答;
(3)4
3
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:551引用:1難度:0.1
相似題
-
1.如圖,四邊形ABCD是矩形紙片,AB=2.對折矩形紙片ABCD,使AD與BC重合,折痕為EF;展平后再過點(diǎn)B折疊矩形紙片,使點(diǎn)A落在EF上的點(diǎn)N,折痕BM與EF相交于點(diǎn)Q;再次展平,連接BN,MN,延長MN交BC于點(diǎn)G.有如下結(jié)論:
①∠ABN=60°;②AM=1;③QN=;④△BMG是等邊三角形;⑤P為線段BM上一動(dòng)點(diǎn),H是BN的中點(diǎn),則PN+PH的最小值是33.3
其中正確結(jié)論的序號是.發(fā)布:2025/5/23 1:30:2組卷:3126引用:15難度:0.5 -
2.如圖1,四邊形ABCD中,∠BCD=90°,AC=AD,AF⊥CD于點(diǎn)F,交BD于點(diǎn)E,∠ABD=2∠BDC.
(1)判斷線段AE與BC的關(guān)系,并說明理由;
(2)若∠BDC=30°,求∠ACD的度數(shù);
(3)如圖2,在(2)的條件下,線段BD與AC交于點(diǎn)O,點(diǎn)G是△BCE內(nèi)一點(diǎn),∠CGE=90°,GE=3,將△CGE繞著點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得△CMH,E點(diǎn)對應(yīng)點(diǎn)為M,G點(diǎn)的對應(yīng)點(diǎn)為H,且點(diǎn)O,G,H在一條直線上直接寫出OG+OH的值.發(fā)布:2025/5/22 19:0:1組卷:523引用:1難度:0.2 -
3.在△ABC中,AB=AC,∠BAC=α,點(diǎn)P為線段CA延長線上一動(dòng)點(diǎn),連接PB,將線段PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為α,得到線段PD,連接DB,DC.
(1)如圖1,當(dāng)α=60°時(shí),
①求證:PA=DC;
②求∠DCP的度數(shù);
(2)如圖2,當(dāng)α=120°時(shí),請直接寫出PA和DC的數(shù)量關(guān)系.
(3)當(dāng)α=120°時(shí),若AB=6,BP=,請直接寫出點(diǎn)D到CP的距離為.31發(fā)布:2025/5/23 4:0:1組卷:4734引用:13難度:0.1