第24屆冬季奧運(yùn)會(huì)將于2022年2月在北京和張家口舉辦,為了普及冬奧知識(shí),京西某校組織全體學(xué)生進(jìn)行了冬奧知識(shí)答題比賽,從全校眾多學(xué)生中隨機(jī)選取了20名學(xué)生作為樣本,得到他們的分?jǐn)?shù)統(tǒng)計(jì)如表:
分?jǐn)?shù)段 | [30,40) | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
人數(shù) | 1 | 2 | 2 | 8 | 3 | 3 | 1 |
(Ⅰ)從這20名學(xué)生中隨機(jī)抽取2名學(xué)生,恰好2名學(xué)生都是優(yōu)秀的概率是多少?
(Ⅱ)將上述樣本統(tǒng)計(jì)中的頻率視為概率,從全校學(xué)生中隨機(jī)抽取2人,以X表示這2人中優(yōu)秀人數(shù),求X的分布列與期望.
【考點(diǎn)】離散型隨機(jī)變量的均值(數(shù)學(xué)期望);離散型隨機(jī)變量及其分布列.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/12/29 2:30:1組卷:254引用:5難度:0.5
相似題
-
1.某市舉行“中學(xué)生詩(shī)詞大賽”,分初賽和復(fù)賽兩個(gè)階段進(jìn)行,規(guī)定:初賽成績(jī)大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績(jī)均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復(fù)賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設(shè)X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學(xué)期望E(X).發(fā)布:2024/12/29 13:30:1組卷:126引用:7難度:0.5 -
2.設(shè)離散型隨機(jī)變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( ?。?/h2>
發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7
把好題分享給你的好友吧~~