已知數(shù)列{an}和{bn}首項均為1,且an-1≥an(n≥2),an+1≥an,數(shù)列{bn}的前n項和為Sn,且滿足2SnSn+1+anbn+1=0,則S2019=( ?。?/h1>
【考點】數(shù)列遞推式;數(shù)列的求和.
【答案】D
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:374引用:7難度:0.5
相似題
-
1.設Sn為數(shù)列{an}的前n項和,若
,5an+1=5an+2,則S5=( )a1=65發(fā)布:2024/12/29 11:0:2組卷:157引用:4難度:0.7 -
2.設a,b∈R,數(shù)列{an}滿足a1=a,an+1=an2+b,n∈N*,則( ?。?/h2>
發(fā)布:2024/12/29 12:30:1組卷:3175引用:9難度:0.4 -
3.在數(shù)列{an}中,a1=1,an+1=2an+2n.
(1)設bn=.證明:數(shù)列{bn}是等差數(shù)列;an2n-1
(2)求數(shù)列{an}的通項公式.發(fā)布:2024/12/29 6:30:1組卷:136引用:11難度:0.3
把好題分享給你的好友吧~~