【閱讀理解】截長補短法,是初中數(shù)學(xué)幾何題中一種輔助線的添加方法.截長就是在長邊上截取一條線段與某一短邊相等,補短是通過在一條短邊上延長一條線段與另一短邊相等,從而解決問題.
(1)如圖1,△ABC是等邊三角形,點D是邊BC下方一點,∠BDC=120°,探索線段DA、DB、DC之間的數(shù)量關(guān)系.
解題思路:延長DC到點E,使CE=BD,連接AE,根據(jù)∠BAC+∠BDC=180°,可證∠ABD=∠ACE,易證得△ABD≌△ACE,得出△ADE是等邊三角形,所以AD=DE,從而探尋線段DA、DB、DC之間的數(shù)量關(guān)系.
根據(jù)上述解題思路,請寫出DA、DB、DC之間的數(shù)量關(guān)系是 DA=DC+DBDA=DC+DB,并寫出證明過程;
【拓展延伸】
(2)如圖2,在Rt△ABC中,∠BAC=90°,AB=AC.若點D是邊BC下方一點,∠BDC=90°,探索線段DA、DB、DC之間的數(shù)量關(guān)系,并說明理由;
【知識應(yīng)用】
(3)如圖3,兩塊斜邊長都為2cm的三角板,把斜邊重疊擺放在一起,則兩塊三角板的直角頂點之間的距離PQ的平方為多少?

【考點】三角形綜合題.
【答案】DA=DC+DB
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/14 8:0:9組卷:434引用:3難度:0.1
相似題
-
1.已知:在△ABC中,∠A=45°,∠ABC=α,以BC為斜邊作等腰Rt△BDC,使得A,D兩點在直線BC的同側(cè),過點D作DE⊥AB于點E.
(1)如圖1,當(dāng)α=20°時,
①直接寫出∠CDE的度數(shù);
②判斷線段AE與BE的數(shù)量關(guān)系,并證明;
(2)當(dāng)45°<α<90°時,依題意補全圖2,請直接寫出線段AE與BC的數(shù)量關(guān)系(用含α的式子表示).發(fā)布:2025/5/23 8:30:2組卷:223引用:1難度:0.1 -
2.閱讀與思考:
尺規(guī)作圖:已知點P是直線MN外一點,求作一條直線PQ,使PQ⊥MN.
小明的作法:如圖1,①在直線MN上任找一點A,連接PA(PA與MN的夾角小于90°);
②以點P為圓心,PA的長為半徑畫弧交直線MN于另一交點為B,連接PB;
③作∠APB的平分線PQ,反向延長射線PQ,則直線PQ⊥MN.
小華的作法:如圖2,①在直線MN上任找一點A,連接PA(PA與MN的夾角小于90°);
②以點P為圓心,PA的長為半徑畫弧交直線MN于另一交點為B;
③分別以A,B為圓心,以大于的長為半徑作弧,兩弧在直線MN的下方相交于點Q;作直線PQ,則PQ⊥MN.12AB
任務(wù):
(1)由小明的作圖過程可知,在△PAB中有PA=PB,因為PQ平分∠APB,所以有PQ⊥MN,這一步的依據(jù)是 .(填序號)
①角平分線上的點到角兩邊的距離相等;
②等腰三角形頂角平分線也是底邊上的高.
(2)你認為小華得到的結(jié)論是否正確?若正確,請利用三角形全等的方法證明;若不正確,說明理由.
(3)如圖3,點O是等腰直角△ABC斜邊AB的中點,點P是邊AB上一動點(不與點O重合),連接CP.分別以A,B為圓心,以CP的長為半徑畫弧,兩弧在△ABC外相交于點Q,連接AQ,OQ,當(dāng)∠OPC=60°時有OQ=1,請直接寫出線段AP的長度.發(fā)布:2025/5/23 9:0:2組卷:248引用:1難度:0.3 -
3.小辰有如圖1所示,含30°,60°角的三角板各兩個,其中大小三角板的最短邊分別為12cm和6cm,現(xiàn)小辰將同樣大小的兩個三角板等長的兩邊重合,進行如下組合和旋轉(zhuǎn)操作.
(1)當(dāng)小辰把四個三角板如圖2拼接組合,△ADE繞A點逆時針旋轉(zhuǎn),連接BD、CE.在旋轉(zhuǎn)過程中,線段BD、CE的數(shù)量關(guān)系是 ,這兩條線段的夾角中,銳角的度數(shù)是 度;
(2)當(dāng)小辰把四個三角板如圖3拼接組合,△ADE繞A點逆時針旋轉(zhuǎn),連接BD、CE.在旋轉(zhuǎn)過程中,線段BD、CE的數(shù)量關(guān)系是 ,請說明理由;
(3)當(dāng)小辰把四個三角板如圖4拼接組合,△ADE繞A點逆時針旋轉(zhuǎn),連接CD,取CD中點N,連結(jié)GN、FN,求GN+FN的最小值.發(fā)布:2025/5/23 8:0:2組卷:460引用:1難度:0.1