試卷征集
加入會員
操作視頻

配方法是數(shù)學中重要的一種思想方法.它是指將一個式子的某一部分通過恒等變形化為完全平方式或幾個完全平方式的和的方法.這種方法常被用到代數(shù)式的變形中,并結合非負數(shù)的意義來解決一些問題.我們定義:一個整數(shù)能表示成a2+b2(a、b是整數(shù))的形式,則稱這個數(shù)為“完美數(shù)”.例如,5是“完美數(shù)”.理由:因為5=22+12.所以5是“完美數(shù)”.
解決問題:
(1)已知10是“完美數(shù)”,請將它寫成a2+b2(a、b是整數(shù))的形式
10=12+32
10=12+32
;
(2)若x2-4x+3可配方成(x-m)2+n(m、n為常數(shù)),則mn=
-2
-2
;
探究問題:
(3)已知x2+y2-2x+6y+10=0,則x+y=
-2
-2
;
(4)已知S=x2+9y2+4x-12y+k(x、y是整數(shù),k是常數(shù)),要使S為“完美數(shù)”,試求出符合條件的一個k值,并說明理由.
拓展結論:
(5)已知實數(shù)x、y滿足-x2+
7
3
x+y-2=0,求5x-3y的最值.

【答案】10=12+32;-2;-2
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1366引用:4難度:0.3
相似題
  • 1.閱讀材料:1261年,我國南宋數(shù)學家楊輝著《詳解九章算法》,在注釋中提到“楊輝三角”解釋了二項和的乘方規(guī)律.在他之前,北宋數(shù)學家賈憲也用過此方法,“楊輝三角”又叫“賈憲三角”.
    菁優(yōu)網(wǎng)
    這個三角形給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)由大到小的順序、b的次數(shù)由小到大的順序排列)的系數(shù)規(guī)律.例如:在三角形中第三行的三個數(shù)1、2、1,恰好對應(a+b)2=a2+2ab+b2展開式中各項的系數(shù);第四行的四個數(shù)1、3、3、1,恰好對應(a+b)3=a3+3a2b+3ab2+b3展開式中各項的系數(shù)等.
    從二維擴展到三維:根據(jù)楊輝三角的規(guī)則,向下進行疊加延伸,可以得到一個楊輝三角的立體圖形.經(jīng)研究,它的每一個切面上的數(shù)字所對應的恰巧是(a+b+c)n展開式的系數(shù).菁優(yōu)網(wǎng)
    (1)根據(jù)材料規(guī)律,請直接寫出(a+b)4的展開式;
    (2)根據(jù)材料規(guī)律,如果將a-b看成a+(-b),直接寫出
    n
    -
    1
    n
    +
    1
    2
    的展開式(結果化簡);若
    n
    2
    2
    n
    4
    -
    5
    n
    2
    +
    2
    =
    1
    7
    ,求
    n
    -
    1
    n
    +
    1
    2
    的值;
    (3)已知實數(shù)a、b、c,滿足a2+b2+c2+2a-4b+6c=-10,且
    1
    a
    +
    1
    +
    1
    b
    -
    2
    -
    1
    c
    +
    3
    =
    0
    ,求a+b-c的值.

    發(fā)布:2024/10/27 17:0:2組卷:462引用:3難度:0.5
  • 2.代數(shù)式x2-4x+5的最小值是( ?。?/h2>

    發(fā)布:2024/10/22 10:0:2組卷:2002引用:7難度:0.9
  • 3.將代數(shù)式x2+4x-1化成(x+h)2+k的形式為( ?。?/h2>

    發(fā)布:2024/11/9 18:0:1組卷:400引用:3難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網(wǎng) | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正